Abstract:
An efficient large scale search system for video and multi-media content using a distributed database and search, and tiered search servers is described. Selected content is stored at the distributed local database and tier1 search server(s). Content matching frequent queries, and frequent unidentified queries are cached at various levels in the search system. Content is classified using feature descriptors and geographical aspects, at feature level and in time segments. Queries not identified at clients and tier1 search server(s) are queried against tier2 or lower search server(s). Search servers use classification and geographical partitioning to reduce search cost. Methods for content tracking and local content searching are executed on clients. The client performs local search, monitoring and/or tracking of the query content with the reference content and local search with a database of reference fingerprints. This shifts the content search workload from central servers to the distributed monitoring clients.
Abstract:
A multi-dimensional database and indexes and operations on the multi-dimensional database are described which include video search applications or other similar sequence or structure searches. Traversal indexes utilize highly discriminative information about images and video sequences or about object shapes. Global and local signatures around keypoints are used for compact and robust retrieval and discriminative information content of images or video sequences of interest. For other objects or structures relevant signature of pattern or structure are used for traversal indexes. Traversal indexes are stored in leaf nodes along with distance measures and occurrence of similar images in the database. During a sequence query, correlation scores are calculated for single frame, for frame sequence, and video clips, or for other objects or structures.
Abstract:
A multi-dimensional database and indexes and operations on the multi-dimensional database are described which include video search applications or other similar sequence or structure searches. Traversal indexes utilize highly discriminative information about images and video sequences or about object shapes. Global and local signatures around keypoints are used for compact and robust retrieval and discriminative information content of images or video sequences of interest. For other objects or structures relevant signature of pattern or structure are used for traversal indexes. Traversal indexes are stored in leaf nodes along with distance measures and occurrence of similar images in the database. During a sequence query, correlation scores are calculated for single frame, for frame sequence, and video clips, or for other objects or structures.
Abstract:
An efficient large scale search system for video and multi-media content using a distributed database and search, and tiered search servers is described. Selected content is stored at the distributed local database and tier1 search server(s). Content matching frequent queries, and frequent unidentified queries are cached at various levels in the search system. Content is classified using feature descriptors and geographical aspects, at feature level and in time segments. Queries not identified at clients and tier1 search server(s) are queried against tier2 or lower search server(s). Search servers use classification and geographical partitioning to reduce search cost. Methods for content tracking and local content searching are executed on clients. The client performs local search, monitoring and/or tracking of the query content with the reference content and local search with a database of reference fingerprints. This shifts the content search workload from central servers to the distributed monitoring clients.
Abstract:
The overall architecture and details of a scalable video fingerprinting and identification system that is robust with respect to many classes of video distortions is described. In this system, a fingerprint for a piece of multimedia content is composed of a number of compact signatures, along with traversal hash signatures and associated metadata. Numerical descriptors are generated for features found in a multimedia clip, signatures are generated from these descriptors, and a reference signature database is constructed from these signatures. Query signatures are also generated for a query multimedia clip. These query signatures are searched against the reference database using a fast similarity search procedure, to produce a candidate list of matching signatures. This candidate list is further analyzed to find the most likely reference matches. Signature correlation is performed between the likely reference matches and the query clip to improve detection accuracy.
Abstract:
Scaleable video sequence processing with various filtering rules is applied to extract dominant features, and generate unique set of signatures based on video content. Video sequence structuring and subsequent video sequence characterization is performed by tracking statistical changes in the content of a succession of video frames and selecting suitable frames for further treatment by region based intra-frame segmentation and contour tracing and description. Compact representative signatures are generated on the video sequence structural level as well as on the selected video frame level, resulting in an efficient video database formation and search.
Abstract:
The invention relates to a method, system, network node and computer program for processing packet data in a communication network, which comprises at least a first network node. In the method a first packet is received at the first network node. In the first network node is assigned for the first packet a chain comprising at least two logical service entities based on at least one service determination rule. A data unit comprising at least part of the first packet is formed. The data unit is processed in at least one logical service entity in the chain and a second packet is transmitted from the first network node comprising data sent by at least one logical service entity in the chain. The benefits of the invention relate to improved flexibility in introducing new value-added service for packet data and improved performance in the first network node.
Abstract:
One embodiment of the present invention receives a plurality of network services, maps the plurality of network services to a single network service at a network layer higher than layer 2, and transmits the single network service. Another embodiment of the present invention receives a single network service at a network layer higher than layer 2, maps the single network service to a plurality of network services, and transmits the plurality of network services.
Abstract:
A network switch configured for switching data packets across multiple ports uses an internal memory to store frame headers for processing by decision making logic. The internal memory stores frame headers in a queue configured to store a number of the frame headers for each of the receive ports. A scheduler is included for facilitating the transfer the data from the queues to the decision making logic according to a predetermined priority. The scheduler is also able allocate the time slots in accordance with data traffic at the corresponding receive ports to maximize data throughput.
Abstract:
A novel method of servicing multiple data queues having different priorities is provided in a network switch. A dequeuing logic circuit services the data queues in a round-robin fashion. Programmable number of data packets is selected from each data queue in each cycle. The dequeuing logic circuit compares the number of data packets selected from a current data queue in a current cycle with the preprogrammed number of data packets set for the current queue, and selects a data packet from the current data queue only if the number of packets selected from the current data queue in the current cycle is less than the preprogrammed number. Selection of a data packet from the current data queue is bypassed, processing a next data queue, if the number of packets selected from the current data queue in the current cycle is not less than the preprogrammed number.