Abstract:
Provided is a method of producing a wafer for a solar cell that can produce the solar cell with high conversion efficiency.A method of producing a wafer for a solar cell according to the present invention comprises a first step of contacting lower alcohol to at least one surface of the semiconductor wafer and a second step, after the first step, of contacting hydrofluoric acid containing metal ion to the at least one surface of the semiconductor wafer, and a third step that is, after the second step, a step of contacting alkali solution to the at least one surface of the semiconductor wafer, a step of contacting acid solution containing hydrofluoric acid and nitric acid to the at least one surface of the semiconductor wafer, or a step of carrying out an oxidation treatment to the at least one surface of the semiconductor wafer.
Abstract:
A solar cell wafer having a porous layer on a surface of a semiconductor wafer typified by a silicon wafer, which can further reduce reflection loss of light at the surface. A solar cell wafer 100 of the present invention has a porous layer 11 having a pore diameter of 10 nm or more and 45 nm or less, on at least one surface 10A of a semiconductor wafer 10, and the layer thickness of the porous layer 11 is more than 50 nm and 450 nm or less.
Abstract:
An object of the present invention is to provided a wafer exhibiting excellent surface properties, in which variation in reaction, which has been concerned in surface treatment with a diffusion controlled process such as conventional wet treatment, is effectively suppressed in a method for surface treatment of a wafer involving a chemical treatment.Provided is a method for surface treatment of a wafer involving a chemical treatment, the chemical treatment including a reaction controlled process, and a diffusion controlled process following the reaction controlled process.
Abstract:
The method for producing a silicon epitaxial wafer according to the present invention has: a growth step F at which an epitaxial layer is grown on a silicon single crystal substrate; a first polishing step D at which, before the growth step, at least a front surface of the silicon single crystal substrate is polished without using abrasive grains; and a second polishing step G at which at least the front surface of the silicon single crystal substrate is subjected to finish polishing after the growth step.
Abstract:
A silicon oxide film on a wafer front surface, including on internal surfaces of pits, is removed by hydrogen fluoride gas. The pits are thus completely filled with a film growth component at a time of epitaxial film growth. Thereby, productivity is not reduced; wafer flatness is enhanced; and micro-roughness of the wafer front surface is improved.