Abstract:
A method for operating a Mobile Station (MS) in a Multiple Input Multiple Output (MIMO) wireless communication system is provided. The method includes measuring channel quality for a serving Base Station (BS), if the channel quality is less than a threshold, measuring interference power from one or more neighbor BSs, determining a Precoding Matrix Index (PMI) and a priority metric for each neighbor BS, and feeding back at least one of the PMI, a PMI type indicator, the priority metric, and the channel quality to the serving BS.
Abstract:
A method provides mixed analog/digital beamforming by a transmitter in a mobile communication system. The method includes converting a modulation symbol into a parallel symbol stream, performing digital beamforming on the parallel symbol stream, performing an IFFT operation on the digital-beamformed parallel symbol stream to generate a time-domain symbol, converting the IFFT-operated time-domain symbol into a serial time-domain symbol, inserting a CP into the serial time-domain symbol, performing a DAC operation on the CP-inserted symbol to generate an analog signal, and performing analog beamforming by multiplying the analog signal by the analog beamforming precoder optimized for the first subcarrier transmitted through at least one RF channel.
Abstract:
A system and a method for forming a cell by using distributed antennas in a World interoperability for Microwave Access (WiMAX) mobile communication system supporting a broadband wireless access communication system. A virtual cell is formed with a specific Mobile Station (MS) as a central part of the virtual cell by using distributed antennas, which improves the transmission capacity and the performance of an overall network system without changing the structure of a backbone network and the interface of the overall network system. The system includes, multiple MSes; distributed antennas for perform simultaneous communications with at least one MS among the multiple MSes, and for forming one virtual cell by communicating with the multiple MSes; and a Base Station (BS), which is typically connected to the distributed antennas through optical fibers, for communicating with the MSes.
Abstract:
An apparatus that adaptively allocates transmission power for beam-forming combined with orthogonal space time block codes in a distributed wireless communication system, the apparatus including: sub-arrays for beam-forming, which are geographically distributed and each of which includes a plurality of distributed antennas placed in random groups. A central processing unit provides predetermined combinable power allocation schemes according to subsets in a plurality of the sub-arrays, identifying performances of the schemes by using information on large-scale fading of each of the sub-arrays fed back from a receiving party, setting a subset having best performance as an optimal subset according to the identified performances, and performing power allocation according thereto.
Abstract:
In one embodiment, a method for network entry in a wireless communication system includes acquiring ranging code configuration information, which represents the corresponding relationship among multiple beam vectors, multiple ranging sequences, and multiple ranging channels, determining an optimal downlink beam vector, and transmitting one of the ranging sequences corresponding to the optimal downlink beam vector to a Base Station (BS) through one of the ranging channels corresponding to the optimal downlink beam vector.
Abstract:
An apparatus that adaptively allocates transmission power for beam-forming combined with orthogonal space time block codes in a distributed wireless communication system, the apparatus including: sub-arrays for beam-forming, which are geographically distributed and each of which includes a plurality of distributed antennas placed in random groups. A central processing unit provides predetermined combinable power allocation schemes according to subsets in a plurality of the sub-arrays, identifying performances of the schemes by using information on large-scale fading of each of the sub-arrays fed back from a receiving party, setting a subset having best performance as an optimal subset according to the identified performances, and performing power allocation according thereto.
Abstract:
Disclosed is an apparatus and method for adaptively allocating transmission power for beamforming combined with orthogonal space-time block codes (OSTBC) in a distributed wireless communication system, the apparatus comprising: a plurality of sub-arrays for beamforming, which are geographically distributed and each of which comprises a plurality of distributed antennas placed in random groups; and a central processing unit for identifying performances of subsets by applying a predetermined power allocation scheme according to subsets which can be obtained by combining the sub-arrays, by means of a Nakagami fading parameter and information about large-scale fading of each of the sub-arrays, fed back from a receiving party, for determining a subset having a best performance as an optimal subset according to the identified performances, and for performing power allocation based on the subset set as the optimal subset.
Abstract:
A method for triggering multicell MIMO schemes in a multiple antenna system includes transmitting, at a Mobile Station (MS), a first feedback information for single-cell closed-loop MIMO to a Base Station (BS); requesting, at the BS, Normalized Interference Power (NIP) feedback from the MS based on the first feedback information; feeding, at the MS, the NIP back to the BS; selecting, at the BS, a first NIP threshold and a second NIP threshold based on the NIP fed back from the MS; and requesting, at the MS, one of a first MIMO scheme and a second MIMO scheme by comparing the calculated first and second NIPs with the first NIP threshold and the second NIP threshold.
Abstract:
Disclosed is a system and a method for performing handover in a Worldwide interoperability for Microwave Access (WiMAX) mobile communication system supporting broadband wireless access. The system includes a plurality of Mobile Stations (MSs); at least one distributed antenna having the ability to perform simultaneous communications with the plurality of MSs; and a base station connected to the at least one distributed antenna through optical fibers for performing communications and handovers with the multiple MSs.
Abstract:
A multiple-input multiple-output (MIMO) communication system includes a base station and a relay station that are connected through an optical fiber. The relay station wirelessly transmits through a plurality of antennas a signal received from the base station. The base station includes a plurality of symbol mappers for mapping input bit streams into a plurality of symbol signals; a MIMO multiplexer generating a plurality of exchange signals by exchanging bits of the symbol signals; and a plurality of code spreaders generating a plurality of spread signals by band spreading the exchange signals. The adoption of a wire transmission scheme for connecting the base station with the relay station through a single optical fiber provides benefits in cost reduction and complexity as the number of electrical-to-optical converters is reduced, and the bandwidth is superior to those in wireless transmission scheme