摘要:
A multiple electrode array for ablating tissue carries at least two electrode segments that are circumferentially spaced from each other. Insulation electrically isolates the separated electrode segments from each other. Signal wires attached to the separated electrode segments convey ablating energy independently to the separated electrode segments. Because of its segmented structure, the array can place only one of the electrode segments in contact with tissue at one time. Because each segment is electrically isolated, and because each segment is independently served by its own signal wire, a physician can operate an ablation energy generator to selectively channel the ablation energy only to the segment actually contacting the tissue.
摘要:
A device for ablating tissue within the body has an element with an energy emitting region helically wound about and along the axis of the element. The element emits energy to create a lesion in body tissue. A sheath of a non-energy emitting material is movable over the region to adjust the impedance of the region.
摘要:
A device for ablating tissue within the body has an element with an energy emitting region helically wound about and along the axis of the element. The element emits energy to create a lesion in body tissue. A sheath of a non-energy emitting material is movable over the region to adjust the impedance of the region.
摘要:
Described are shoes, orthodic appliances, and anatomic braces containing superelastic support members for enhanced performance. The superelastic supports provide dynamic response to deflection. As such, the superelastic supports incorporated in the soles of shoes enhance walking, running, jumping, kicking, or other motion involving the foot. The superelastic supports may be incorporated in the body of shoes to reinforce the ankle joint. The embodiments of the invention also provide superelastic supports in braces to reinforce or stabilize the knees, ankles, elbows, wrists, shoulders, back, neck, hips, or other anatomy commonly associated with a degree of twisting, rotation, bending, or other desired motion. The braces also intensify the motion of anatomic structures, apply a specific resistance at the joint to strengthen the muscles during training or rehabilitation, and/or immobilize or stabilize joints, bones, or other anatomic structures during healing of an injury.
摘要:
A bypass graft incorporates fixation mechanisms at its opposite ends, for securing these ends to different locations along a blood vessel, or alternatively to different locations wherein one of the locations is a different vessel or an organ defining a cavity. Mechanical fixation features such as collets or grommets can be employed, enhanced by delivery of an electrical current sufficient to heat surrounding tissue to form a thermal bond. A graft deployment system includes a tissue dilator and a needle for perforating tissue, mounted coaxially within the dilator. Intralumenal systems further include a catheter for containing the dilator.
摘要:
A bypass graft incorporates fixation mechanisms at its opposite ends, for securing these ends to different locations along a blood vessel, or alternatively to different locations wherein one of the locations is a different vessel or an organ defining a cavity. Mechanical fixation features such as collets or grommets can be employed, enhanced by delivery of an electrical current sufficient to heat surrounding tissue to form a thermal bond. A graft deployment system includes a tissue dilator and a needle for perforating tissue, mounted coaxially within the dilator. Intralumenal systems further include a catheter for containing the dilator.
摘要:
A resilient graft construction incorporates a structural layer formed of a resilient body compatible metal or polymer, and a fluid impervious layer of graft material secured to the structural layer. The structural layer includes an elongate longitudinal primary section, and secondary sections extended transversely from opposite sides of the primary section. The secondary sections can be arranged in opposed pairs, or staggered. The secondary sections further can be tapered in width, thickness or both. The grafts can be constructed by stamping or otherwise severing structural layer patterns from a flat sheet of structural material, then thermally setting the structural layers when they are wrapped about a mandril to determine a relaxed-state curvature. Opposed longitudinal edges either can overlap one another or be spaced apart from one another in the relaxed state. According to one alternative, the structural layer alone functions as a stent. Other alternatives include circumferentially closed graft structures, one of which consists of a resilient graft material.
摘要:
A bypass graft incorporates fixation mechanisms at its opposite ends, for securing these ends to different locations along a blood vessel, or alternatively to different locations wherein one of the locations is a different vessel or an organ defining a cavity. Mechanical fixation features such as collets or grommets can be employed, enhanced by delivery of an electrical current sufficient to heat surrounding tissue to form a thermal bond. A graft deployment system includes a tissue dilator and a needle for perforating tissue, mounted coaxially within the dilator. Intralumenal systems further include a catheter for containing the dilator.
摘要:
A deployment device for stents and grafts includes a catheter, an expansion framework or cage near the catheter distal end, and a means for controlling expansion from a proximal end of the catheter. The cage is formed of a plurality of elongate strands coupled at opposite ends to the catheter and to the control device. Axial movement of the control device relative to the catheter either elongates the strands to radially collapse the cage, or axially reduces the distance between the strand ends for radial enlargement. In one embodiment the control device is a stylet contained in a lumen of the catheter and extending beyond the catheter distal end. The strands are fixed at their opposite ends to the catheter distal end and the stylet distal end. In another embodiment, the strands are coupled to proximal and distal rings along the catheter, with one of the rings being axially movable by a wire to radially expand and reduce the cage.
摘要:
A deflectable component for a motorized vehicle can include a deflectable part formed at least partially from a superelastic and or shape memory material, wherein at least a portion of the deflectable component is moved to a deflected position upon application of a threshold force when moving at or above a predetermined speed, and returning to an undeflected position when moving below the predetermined speed. The deflectable component may comprise a connection link fabricated at least partially from a superelastic and/or shape memory material to tailor the flex point characteristics of a connected surface to a desired response. The deflectable component may improve the performance of motorized vehicles by improving the aerodynamic and fuel efficiency, as well as other beneficial effects.