Abstract:
A frame sequence of moving picture data is divided into a tile image sequence 250, and the color space of the tile image sequence 250 is converted to generate a YCbCr image sequence 252 (S10). Each frame is reduced to ½ time in the vertical and horizontal directions (S12), and a compression process is carried out to generate compression data 260 of a reference image (S14). The compression data 260 of the reference image is decoded and decompressed similarly as upon image display to restore a YCbCr image as the reference image, and a difference image sequence 262 is generated from the reference image and the original YCbCr image 252 (S16). Then, compression data 266 of a difference image is generated (S18), and compression data 268 obtained by connecting the compression data 260 of the reference image and the compression data 266 of the difference image is generated for every four frames of a tile image (S20).
Abstract:
An information processor includes a detection plane definition portion defining a detection plane in a 3D space of a camera coordinate system of a first camera and calculates vertex coordinates of a detection area by projecting the detection plane onto a plane of a left image shot by the first camera. A feature quantity calculation portion generates feature point image of left and right images. A parallax correction area derivation portion derives an area as a parallax correction area. The parallax correction area is obtained by moving, to a left, an area of a right image identical to the detection area of the left image by as much as the parallax appropriate to a position of the detection plane in a depth direction. A matching portion performs block matching for the feature point images of each area, thus deriving a highly rated feature point. A position information output portion generates information to be used by an output information generation section based on the matching result and output that information.
Abstract:
Frames of a moving image are configured as a hierarchical structure where each frame is represented with a plurality of resolutions. Some layers are set as original image layers, and the other layers are set as difference image layers in hierarchical data representing a frame at each time step. In the case that an area is to be displayed in the resolution of the difference image layer, to respective pixel values of a difference image of the area, respective pixel values of an image of a corresponding area retained by the original image layer of lower resolution, the image enlarged to the resolution of the difference image layer, are added. A layer to be set as a difference image layer is switched to another layer as time passes.
Abstract:
An information processor acquires a stereo image from an imaging device. A detection plane definition portion defines a detection plane in a three-dimensional space of a camera coordinate system of a first camera. A feature quantity calculation portion generates feature point image of left and right images. A parallax correction area derivation portion derives an area as a parallax correction area, which is obtained by moving, to a left, an area of the right image identical to the detection area of the left image. A matching portion performs matching for the feature point images of each area, thus deriving a highly rated feature point. A position information output portion generates information to be used by an output information generation section based on the matching result.
Abstract:
An information processing device includes: an information processing section configured to detect a figure of a target object from an image captured from a movie of the target object so as to perform information processing on the detected image; a main data generating section configured to generate data of a main image to be displayed as a result of the information processing; an auxiliary data generating section configured to generate data of an auxiliary image including the captured image; and an output data transmitting section configured to transmit to an output device the main image data and the auxiliary image data in relation to each other such that the main image and the auxiliary image are displayed together.
Abstract:
An information processor includes: a similarity data generation portion generating similarity data that represents the calculated similarity to the image in the reference block in association with a position within the search range; a result evaluation portion detecting a position with a maximum similarity value for each piece of the similarity data and screening the detection result by making a given evaluation of the similarity; a depth image generation portion finding a parallax for each of the reference blocks using the detection result validated as a result of screening, calculating a position of a subject in a depth direction on a basis of the parallax, and generating a depth image by associating the position of the subject in the depth direction with an image plane; and an output information generation section performing given information processing on a basis of the subject position in a three-dimensional space using the depth image and outputting the result of information processing.
Abstract:
An input information obtaining portion of a control section obtains requests input from an input device by a user, which requests include a display region moving request to enlarge/reduce or scroll an image displayed on a display device and a request to generate/erase a viewport, change the size of a viewport, or move a viewport. A viewport control portion successively determines the number, arrangement, and size of viewports accordingly. A display region determining portion determines the region of an image to be displayed next in each viewport. A loading portion determines tile images to be newly loaded, and loads the data of the tile images from a hard disk drive. A decoding portion decodes the data of tile images used for rendering the image in each viewport. A display image processing portion updates the display region independently for each viewport.
Abstract:
An image pickup apparatus includes: an image data production unit configured to produce data of a plurality of kinds of images from a picked up image and successively output the data; an image synthesis unit configured to cyclically connect the data of the plurality of kinds of images for each pixel string within a range set in advance for each of the kinds of the images and output the connected data as a stream to produce a virtual synthetic image; and an image sending unit configured to accept, from a host terminal, a data transmission request that designates a rectangular region in the virtual synthetic image, extract and connect data from the stream and transmit the connected data as a new stream to the host terminal.
Abstract:
An original image to be edited is displayed using hierarchical data. As a user draws a figure in a region of the image as an edit action, an image data updating unit generates a layer having a hierarchical structure composed of the rendered region only. More specifically, the image of the region to be edited is used as the lowermost hierarchical level, and upper hierarchical levels than this lowermost level are generated by reducing the lowermost level, as appropriate, so as to produce hierarchical data. As, during image display, it is checked that the updated region is contained in a frame to be displayed anew, the image of the layer is displayed by superposing the frame on the original hierarchical data.
Abstract:
Links are set among three hierarchical data 170, 172, and 174 and one moving image data 182. When a display area overlaps with a link area 176 while an image is being displayed by using the hierarchical data 170, switching to display by use of the 0-th hierarchical level of the hierarchical data 172 is made (link a). When the display area overlaps with a link area 178 while an image is being displayed by using the hierarchical data 172, switching to display by use of the 0-th hierarchical level of the hierarchical data 174 is made (link b). The link destination of another link area 180 of the hierarchical data 170 is the moving image data 182 (link c) and moving image reproduction is started as a result of zoom-up of this area. The hierarchical data 170 and 172 are held on the client terminal side and the data existing on the other side of a switching boundary 184 are transmitted by a server to the client terminal in a data stream format.