Abstract:
A storage element is provided. The storage element includes a memory layer having a first magnetization state of a first material; a fixed magnetization layer having a second magnetization state of a second material; an intermediate layer including a nonmagnetic material and provided between the memory layer and the fixed magnetization layer; wherein the first material includes Co—Fe—B alloy, and at least one of a non-magnetic metal and an oxide.
Abstract:
There is disclosed an information storage element including a first layer including a ferromagnetic layer with a magnetization direction perpendicular to a film face; an insulation layer coupled to the first layer; and a second layer coupled to the insulation layer opposite the first layer, the second layer including a fixed magnetization so as to be capable of serving as a reference of the first layer. The first layer is capable of storing information according to a magnetization state of a magnetic material, and the magnetization state is configured to be changed by a spin injection. A magnitude of an effective diamagnetic field which the first layer receives is smaller than a saturated magnetization amount of the first layer.
Abstract:
A storage element includes a storage layer which has magnetization perpendicular to its film surface and which retains information by a magnetization state of a magnetic substance, a magnetization pinned layer having magnetization perpendicular to its film surface which is used as the basis of the information stored in the storage layer, an interlayer of a non-magnetic substance provided between the storage layer and the magnetization pinned layer, and a cap layer which is provided adjacent to the storage layer at a side opposite to the interlayer and which includes at least two oxide layers. The storage element is configured to store information by reversing the magnetization of the storage layer using spin torque magnetization reversal generated by a current passing in a laminate direction of a layer structure including the storage layer, the interlayer, and the magnetization pinned layer.
Abstract:
A storage element is provided. The storage element includes a memory layer having a first magnetization state of a first material; a fixed magnetization layer having a second magnetization state of a second material; an intermediate layer including a nonmagnetic material and provided between the memory layer and the fixed magnetization layer; wherein the first material includes Co—Fe—B alloy, and at least one of a non-magnetic metal and an oxide.
Abstract:
Spin transfer torque memory elements and memory devices are provided. In one embodiment, the spin transfer torque memory element includes a first portion including CoFeB, a second portion including CoFeB, an intermediate portion interposed between the first and second portions, a third portion adjoining the second portion opposite the intermediate portion, and a fourth portion adjoining the third portion opposite the second portion. The intermediate portion includes MgO. The third portion includes at least one of Ag, Au, Cr, Cu, Hf, Mo, Nb, Os, Re, Ru, Ta, W, and Zr. The fourth portion includes at least alloy of CoPt, FePt, and Ru.
Abstract:
There is disclosed a memory element including a layered structure including a memory layer that has a magnetization perpendicular to a film face; a magnetization-fixed layer; and an insulating layer provided between the memory layer. An electron that is spin-polarized is injected in a lamination direction of a layered structure, a magnitude of an effective diamagnetic field which the memory layer receives is smaller than a saturated magnetization amount of the memory layer, in regard to the insulating layer that comes into contact with the memory layer, and the other side layer with which the memory layer comes into contact at a side opposite to the insulating layer, at least an interface that comes into contact with the memory layer is formed of an oxide film, and the memory layer includes at least one of non-magnetic metal and oxide in addition to a Co—Fe—B magnetic layer.
Abstract:
Provided is a storage cell that makes it possible to enhance magnetic characteristics of magnetization pinned layer, a storage device and a magnetic head that include the storage cell. The storage cell includes a layer structure including a base layer, a storage layer in which a direction of magnetization is varied in correspondence with information, a magnetization pinned layer that is formed above the base layer and has magnetization that is perpendicular to a film surface and serves as a reference of information stored in the storage layer, and an intermediate layer that is provided between the storage layer and the magnetization pinned layer and is made of a nonmagnetic body. The base layer has a laminated structure of ruthenium and a nonmagnetic body having a face-centered cubic lattice, and the ruthenium is formed at a location adjacent to the magnetization pinned layer.
Abstract:
A memory element has a layered structure, including a memory layer that has magnetization perpendicular to a film face in which a magnetization direction is changed depending on information, and includes a Co—Fe—B magnetic layer, the magnetization direction being changed by applying a current in a lamination direction of the layered structure to record the information in the memory layer, a magnetization-fixed layer having magnetization perpendicular to a film face that becomes a base of the information stored in the memory layer, and an intermediate layer that is formed of a non-magnetic material and is provided between the memory layer and the magnetization-fixed layer, a first oxide layer and a second oxide layer.
Abstract:
A memory element has a layered configuration, including a memory layer in which a magnetization direction is changed corresponding to information; the magnetization direction being changed by applying a current in a lamination direction of the layered configuration to record the information in the memory layer, a magnetization-fixed layer in which a magnetization direction is fixed, an intermediate layer that is formed of a non-magnetic material and is provided between the memory layer and the magnetization-fixed layer, and a perpendicular magnetic anisotropy inducing layer, the memory layer including a first ferromagnetic layer, a first bonding layer, a second ferromagnetic layer, a second bonding layer and a third ferromagnetic layer laminated in the stated order.
Abstract:
According to some aspects, a layered structure includes a memory layer, a magnetization-fixed layer, and a tunnel insulating layer. The memory layer has magnetization perpendicular to a film face in which a direction of the magnetization is configured to be changed according to information by applying a current in a lamination direction of the layered structure. The magnetization-fixed layer has magnetization parallel or antiparallel to the magnetization direction of the memory layer and comprises a laminated ferripinned structure including a plurality of ferromagnetic layers and one or more non-magnetic layers, and includes a layer comprising an antiferromagnetic material formed on a first ferromagnetic layer of the plurality of ferromagnetic layers and situated between the first ferromagnetic layer and the non-magnetic layer. The tunnel insulating layer is located between the memory layer and the magnetization-fixed layer.