Abstract:
Methods (10, 30) and devices (20, 40) for performing radio transmissions in a wireless communication network are provided. A method (30) associated with a wireless terminal (40, 40A) which performs radio transmissions in the wireless communication network comprises: receiving (31) a multiple input multiple output, MIMO, transmission from an access node (20) of the wireless communication network; estimating (32) a spatial orientation (θ, (ϕ)) of an antenna array (42) of the wireless terminal (40, 40A) based on measurements performed by at least one sensor (43) of the wireless terminal (40, 40A); and based on the estimated spatial orientation (θ, (ϕ)), filtering out (33) a polarization crosstalk from the received MIMO transmission, the polarization crosstalk being associated with the spatial orientation (θ, (ϕ)) of the antenna array (42) of the wireless terminal (40, 40A).
Abstract:
A balanced planar antenna having at least one mmWave resonant frequency includes a ground plane, first and second antenna elements, an arm that connects the second antenna element to the ground plane, a feed line connected to the first antenna element and for feeding a radio frequency signal to the first antenna element, and a balun that connects the first antenna element to the ground plane. The ground plane, first antenna element, second antenna element, arm, feed line and balun each are disposed on a substrate and are coplanar.
Abstract:
A wireless electronic device includes dual radiating antennas, with each of the dual radiating antennas including a first radiating element and a second radiating element. The wireless electronic device includes power dividers, a respective one of which is associated with a respective one of the dual radiating antennas and is configured to divide the power of a signal into a first portion of the power and a second portion of the power. The first portion of the power is applied to a respective first radiating element and the second portion of the power is applied to the respective second radiating element. The wireless electronic device is configured to resonate at a resonant frequency corresponding to the first radiating element and/or the second radiating element of at least one of the plurality of dual radiating antennas when excited by a signal transmitted by at least one of the plurality of dual radiating antennas.
Abstract:
A wireless electronic device includes an inverted-F antenna (IFA) having an IFA exciting element, an IFA feed, and a grounding pin. The IFA exciting element is configured to resonate at two different resonant frequencies, when excited by a signal received through the IFA feed. The wireless electronic device includes a highband wave trap having a length defined based on a first resonant frequency of the IFA exciting element. The highband wave trap is electrically coupled to the IFA exciting element through the grounding pin. A ground patch is electrically coupled between the highband wave trap and the ground plane. The wireless electronic device includes a lowband wave trap having a length defined based on a second resonant frequency of the IFA exciting element. The lowband wave trap is electrically coupled to the ground plane through the ground patch.
Abstract:
Wearable wireless electronic devices are provided. A wearable wireless electronic device may be a wearable first wireless electronic device that may include a user-wearable transmitter. The user-wearable transmitter may include first and second electrodes that are spaced apart from each other. The first and second electrodes may include first and second curved portions, respectively, when the user-wearable transmitter is worn by a user. Moreover, the first and second electrodes may be configured to transmit communications through a human body of the user to a second wireless electronic device on or adjacent the human body of the user.
Abstract:
A device is equipped with at least one communication module. The communication module supports communication on the basis of body-coupled-communication signals. Further, the device is equipped with a metal frame. The metal frame forms a part of an outer surface of the device. The metal frame is operable to provide conductive coupling of the of body-coupled-communication signals to a body of a user of the device.
Abstract:
A wireless electronic device includes first and second conductive layers arranged in a face-to-face relationship. The first and second conductive layers are separated from one another by a first dielectric layer. The wireless electronic device includes a first radiating element and a second radiating element. The first conductive layer includes a slot. The second conductive layer includes a stripline. The second radiating element at least partially overlaps the slot. The wireless electronic device is configured to resonate at a resonant frequency corresponding to the first radiating element and/or the second radiating element when excited by a signal transmitted and/or received though the stripline.
Abstract:
Wearable wireless electronic devices are provided. A wearable wireless electronic device may be a wearable first wireless electronic device that may include a user-wearable transmitter. The user-wearable transmitter may include first and second electrodes that are spaced apart from each other. The first and second electrodes may include first and second curved portions, respectively, when the user-wearable transmitter is worn by a user. Moreover, the first and second electrodes may be configured to transmit communications through a human body of the user to a second wireless electronic device on or adjacent the human body of the user.