摘要:
A cost efficient and manufacturable method of fabricating strained semiconductor-on-insulator (SSOI) substrates is provided that avoids wafer bonding. The method includes growing various epitaxial semiconductor layers on a substrate, wherein at least one of the semiconductor layers is a doped and relaxed semiconductor layer underneath a strained semiconductor layer; converting the doped and relaxed semiconductor layer into a porous semiconductor via an electrolytic anodization process, and oxidizing to convert the porous semiconductor layer into a buried oxide layer. The method provides a SSOI substrate that includes a relaxed semiconductor layer on a substrate; a high-quality buried oxide layer on the relaxed semiconductor layer; and a strained semiconductor layer on the high-quality buried oxide layer. In accordance with the present invention, the relaxed semiconductor layer and the strained semiconductor layer have identical crystallographic orientations.
摘要:
A strained (tensile or compressive) semiconductor-on-insulator material is provided in which a single semiconductor wafer and a separation by ion implantation of oxygen process are used. The separation by ion implantation of oxygen process, which includes oxygen ion implantation and annealing creates, a buried oxide layer within the material that is located beneath the strained semiconductor layer. In some embodiments, a graded semiconductor buffer layer is located beneath the buried oxide layer, while in other a doped semiconductor layer including Si doped with at least one of B or C is located beneath the buried oxide layer.
摘要:
A cost efficient and manufacturable method of fabricating strained semiconductor-on-insulator (SSOI) substrates is provided that avoids wafer bonding. The method includes growing various epitaxial semiconductor layers on a substrate, wherein at least one of the semiconductor layers is a doped and relaxed semiconductor layer underneath a strained semiconductor layer; converting the doped and relaxed semiconductor layer into a porous semiconductor via an electrolytic anodization process, and oxidizing to convert the porous semiconductor layer into a buried oxide layer. The method provides a SSOI substrate that includes a relaxed semiconductor layer on a substrate; a high-quality buried oxide layer on the relaxed semiconductor layer; and a strained semiconductor layer on the high-quality buried oxide layer. In accordance with the present invention, the relaxed semiconductor layer and the strained semiconductor layer have identical crystallographic orientations.
摘要:
A cost efficient and manufacturable method of fabricating strained semiconductor-on-insulator (SSOI) substrates is provided that avoids wafer bonding. The method includes growing various epitaxial semiconductor layers on a substrate, wherein at least one of the semiconductor layers is a doped and relaxed semiconductor layer underneath a strained semiconductor layer; converting the doped and relaxed semiconductor layer into a porous semiconductor via an electrolytic anodization process, and oxidizing to convert the porous semiconductor layer into a buried oxide layer. The method provides a SSOI substrate that includes a relaxed semiconductor layer on a substrate; a high-quality buried oxide layer on the relaxed semiconductor layer; and a strained semiconductor layer on the high-quality buried oxide layer. In accordance with the present invention, the relaxed semiconductor layer and the strained semiconductor layer have identical crystallographic orientations.
摘要:
Semiconductor-on-insulator (SOI) substrates including a buried oxide (BOX) layer having a thickness of less than 300 Å are provided. The (SOI) substrates having the thin BOX layer are provided using a method including a step in which oxygen ions are implanted at high substrate temperatures (greater than 600° C.), and at a low implant energy (less than 40 keV). An anneal step in an oxidizing atmosphere follows the implant step and is performed at a temperature less than 1250° C. The anneal step in oxygen containing atmosphere converts the region containing implanted oxygen atoms formed by the implant step into a BOX having a thickness of less than 300 Å. In some instances, the top semiconductor layer of the SOI substrate has a thickness of less than 300 Å.
摘要:
Semiconductor-on-insulator (SOI) substrates including a buried oxide (BOX) layer having a thickness of less than 300 Å are provided. The (SOI) substrates having the thin BOX layer are provided using a method including a step in which oxygen ions are implanted at high substrate temperatures (greater than 600° C.), and at a low implant energy (less than 40 keV). An anneal step in an oxidizing atmosphere follows the implant step and is performed at a temperature less than 1250° C. The anneal step in oxygen containing atmosphere converts the region containing implanted oxygen atoms formed by the implant step into a BOX having a thickness of less than 300 Å. In some instances, the top semiconductor layer of the SOI substrate has a thickness of less than 300 Å.
摘要:
The present invention provides a method for removing or reducing the thickness of ultrathin interfacial oxides remaining at Si—Si interfaces after silicon wafer bonding. In particular, the invention provides a method for removing ultrathin interfacial oxides remaining after hydrophilic Si—Si wafer bonding to create bonded Si—Si interfaces having properties comparable to those achieved with hydrophobic bonding. Interfacial oxide layers of order of about 2 to about 3 nm are dissolved away by high temperature annealing, for example, an anneal at 1300°-1330° C. for 1-5 hours. The inventive method is used to best advantage when the Si surfaces at the bonded interface have different surface orientations, for example, when a Si surface having a (100) orientation is bonded to a Si surface having a (110) orientation. In a more general aspect of the invention, the similar annealing processes may be used to remove undesired material disposed at a bonded interface of two silicon-containing semiconductor materials. The two silicon-containing semiconductor materials may be the same or different in surface crystal orientation, microstructure (single-crystal, polycrystalline, or amorphous), and composition.
摘要:
Methods for removing or reducing the thickness of a material layer remaining at Si-Si interfaces after silicon wafer bonding. The methods include an anneal which is performed at a temperature sufficient to dissolve oxide, yet not melt silicon.
摘要:
An embedded epitaxial semiconductor portion having a different composition than matrix of the semiconductor substrate is formed with a lattice mismatch and epitaxial alignment with the matrix of the semiconductor substrate. The temperature of subsequent ion implantation steps is manipulated depending on the amorphizing or non-amorphizing nature of the ion implantation process. For a non-amorphizing ion implantation process, the ion implantation processing step is performed at an elevated temperature, i.e., a temperature greater than nominal room temperature range. For an amorphizing ion implantation process, the ion implantation processing step is performed at nominal room temperature range or a temperature lower than nominal room temperature range. By manipulating the temperature of ion implantation, the loss of strain in a strained semiconductor alloy material is minimized.
摘要:
This invention provides a separation by implanted oxygen (SIMOX) method for forming planar hybrid orientation semiconductor-on-insulator (SOI) substrates having different crystal orientations, thereby making it possible for devices to be fabricated on crystal orientations providing optimal performance. The method includes the steps of selecting a substrate having a base semiconductor layer having a first crystallographic orientation separated by a thin insulating layer from a top semiconductor layer having a second crystallographic orientation; replacing the top semiconductor layer in selected regions with an epitaxially grown semiconductor having the first crystallographic orientation; then using an ion implantation and annealing method to (i) form a buried insulating region within the epitaxially grown semiconductor material, and (ii) thicken the insulating layer underlying the top semiconductor layer, thereby forming a hybrid orientation substrate in which the two semiconductor materials with different crystallographic orientations have substantially the same thickness and are both disposed on a common buried insulator layer. In a variation of this method, an ion implantation and annealing method is instead used to extend an auxiliary buried insulator layer (initially underlying the base semiconductor layer) upwards (i) into the epitaxially grown semiconductor, and (ii) up to the insulating layer underlying the top semiconductor layer.