Abstract:
Provided is a semiconductor device including a thin film transistor with at least one protruding impurity region and a method for manufacturing the same. The semiconductor device includes bulk transistors formed on a semiconductor substrate and an interlayer insulation layer covering the bulk transistor. At least one thin film transistor is formed on the interlayer insulation layer including impurity regions adjacent thereto. At least one impurity region of the thin film transistor protrudes higher than the other impurity region.
Abstract:
A photo mask set for forming multi-layered interconnection lines and a semiconductor device fabricated using the same includes a first photo mask for forming lower interconnection lines and a second photo mask for forming upper interconnection lines. The first and second photo masks have lower opaque patterns parallel with each other and upper opaque patterns that overlap the lower opaque patterns. In this case, ends of the lower opaque patterns are located on a straight line that crosses the lower opaque patterns. As a result, when upper interconnection lines are formed using the second photo mask, poor photo resist patterns can be prevented from being formed despite the focusing of reflected light.
Abstract:
Methods of fabricating a semiconductor integrated circuit having thin film transistors using an SEG technique are provided. The methods include forming an inter-layer insulating layer on a single-crystalline semiconductor substrate. A single-crystalline semiconductor plug extends through the inter-layer insulating layer, and a single-crystalline epitaxial semiconductor pattern is in contact with the single-crystalline semiconductor plug on the inter-layer insulating layer. The single-crystalline epitaxial semiconductor pattern is at least partially planarized to form a semiconductor body layer on the inter-layer insulating layer, and the semiconductor body layer is patterned to form a semiconductor body. As a result, the semiconductor body includes at least a portion of the single-crystalline epitaxial semiconductor pattern. Thus, the semiconductor body has an excellent single-crystalline structure. Semiconductor integrated circuits fabricated using the methods are also provided.
Abstract:
Disclosed are electrophoretic particles, a method of preparing the same, and an electrophoretic display using the same. The electrophoretic particle includes a coating layer, which includes a co-polymer of styrene and heterocyclic compound, and a pigment surrounded by the coating layer. The method includes polymerizing styrene on a surface of the electrophoretic particle and polymerizing styrene and a heterocyclic compound. The electrophoretic display includes the electrophoretic particles.
Abstract:
Provided are a microfluidic device and a microfluidic network formed by connecting such microfluidic devices. The microfluidic device can equalize the flow of multiple microfluids in a chamber in parallel to thereby have an equal flow rate when the microfluids transferred through different flow channels join in the chamber having a changing cross-sectional area. The microfluidic device includes: multiple flow channels formed between an upper substrate and a lower substrate to transfer the microfluids and including inlets for injecting the microfluids in one side and fluid stopping surfaces for stopping the flow of the microfluids in the other side; a pressure controlling flow channel for removing a pressure difference between the microfluids; a fluid converging part for converging the microfluids; and a chamber composed of hydrophilic surfaces and hydrophobic surfaces disposed alternately in a flow direction so that the microfluids join and flow in parallel and equal.
Abstract:
A method of transmitting/receiving feedback information representing channel quality in a MIMO-OFDM system, in which a receiver measures channel qualities of signals transmitted on a plurality of subbands through a plurality of transmitting antennas by a transmitter, selects a predetermined number of subbands having a highest transmission performance based on the measured channel qualities and preceding information, determines at least one subband group with a maximum rate from among the selected subbands and the preceding information associated with the at least one subband group, and transmits feedback information to the transmitter, the feedback information including channel quality information about the at least one subband group and the associated preceding information.
Abstract:
An apparatus and method for scheduling a multiuser and a single user in a Multiple Input Multiple Output (MIMO) system are provided. The method for scheduling a multiuser and a single user at BS in MIMO system includes determining ratios of MultiUser-MIMO (MU-MIMO) chunks and Single User-MIMO (SU-MIMO) chunks to allocation chunks, determining the MU-MIMO chunks in the determined ratio and the remaining chunks as the SU-MIMO chunks, transmitting chunk information relating to the determined chunks to one or more Mobile Stations (MSs), and, when Channel Quality Information (CQI) feedback information relating to the determined MU-MIMO chunks and the determined SU-MIMO chunks is received from the MSs, allocating chunks and streams for MU-MIMO/SU-MIMO to users who maximize overall capacity using the CQI feedback information.