Abstract:
A coating for an implantable medical device is provided comprising a first layer including a first polymer and a second layer including a second polymer. The second layer is disposed over at least a portion of the first layer. The second polymer has a lower degree of hydration than the first polymer.
Abstract:
An apparatus for coating implantable medical devices, such as stents, and a method of coating stents using the apparatus is also disclosed. The apparatus includes a barrier or barriers for isolating an area of the stent on which a composition for coating a stent is applied. Two coating compositions can be applied simultaneously to a stent by separate nozzles on different sides of a barrier. Cross-contamination of the compositions is prevented by the barrier.
Abstract:
A patterned coating on a prosthesis, for example a stent, and a method for forming the coating are disclosed Additionally, an apparatus for forming the patterned coating is disclosed.
Abstract:
The present invention relates to a composition of a first single enantiomer homopolymer and a separate stereocomplex formed of a second single enantiomer homopolymer and it mirror image enantiomer, wherein the first and second single enantiomer homopolymers can be the same or different.
Abstract:
Coatings for an implantable medical device and a method of fabricating thereof are disclosed, the coatings comprising a biologically degradable, biologically erodable, and/or biologically resorbable ABA or AB block copolymer. A biologically active agent can be conjugated to the block copolymer.
Abstract:
Coatings for implantable medical devices and methods for fabricating the same are disclosed. The coating includes polycationic peptides, for example R7.
Abstract:
A method of coating a medical device, such as a stent is provided. The method can include forming a polymer layer containing a drug on the device, applying a polymer melt free from any solvents to the polymer layer to form a topcoat layer, wherein the during the application of the polymer melt the migration of the drug from the polymer layer is prevented or significantly minimized.