Abstract:
This invention relates to poly(ester amide)s (PEAs) comprising inactivated terminal amino and carboxyl groups, methods of synthesizing the inactivated PEAs and uses for them in the treatment of vascular diseases.
Abstract:
Methods of fabricating a polymeric implantable device with improved fracture toughness through annealing, nucleating agents, or both are disclosed herein. A polymeric construct that is completely amorphous or that has a very low crystallinity is annealed with no or substantially no crystal growth to increase nucleation density. Alternatively, the polymer construct includes nucleating agent. The crystallinity of the polymer construct is increased with a high nucleation density through an increase in temperature, deformation, or both. An implantable medical device, such as a stent, can be fabricated from the polymer construct after the increase in crystallinity.
Abstract:
Catheter injectable depot compositions are provided that include a bioerodible, biocompatible polymer, a solvent having miscibility in water of less than or equal to 7 wt. % at 25° C., in an amount effective to plasticize the polymer and form a gel therewith, a thixotropic agent, and a beneficial agent. The solvent comprises an aromatic alcohol, an ester of an aromatic acid, an aromatic ketone, or mixtures thereof. The compositions have substantially improved shear thinning behavior and reduced injection force, rendering the compositions readily implanted beneath a patient's body surface by injection.
Abstract:
Methods and compositions for the sustained release of treatment agents to treat an occluded blood vessel and affected tissue and/or organs are disclosed. Porous or non-porous bioabsorbable glass, metal or ceramic bead, rod or fiber particles can be loaded with a treatment agent, and optionally an image-enhancing agent, and coated with a sustained-release coating for delivery to an occluded blood vessel and affected tissue and/or organs by a delivery device. Implantable medical devices manufactured with coatings including the particles or embedded within the medical device are additionally disclosed.
Abstract:
Provided herein is a poly(ester amide) (PEA) polymer blend and a polymeric coating containing the PEA polymer blend. The PEA polymer blend has a Tg above the Tg of poly(ester amide benzyl ester) (PEA-Bz) or the Tg of poly(ester amide TEMPO). The PEA polymer blend can form a coating on an implantable device, one example of which is a stent. The coating can optionally include a biobeneficial material and/or optionally with a bioactive agent. The implantable device can be used to treat or prevent a disorder such as one of atherosclerosis, thrombosis, restenosis, hemorrhage, vascular dissection or perforation, vascular aneurysm, vulnerable plaque, chronic total occlusion, claudication, anastomotic proliferation for vein and artificial grafts, bile duct obstruction, ureter obstruction, tumor obstruction, and combinations thereof.
Abstract translation:本文提供了聚(酯酰胺)(PEA)聚合物共混物和含有PEA聚合物共混物的聚合物涂层。 PEA聚合物共混物在聚(酯酰胺苄酯)(PEA-Bz)或T N g N T T上方具有T N' 的聚(酯酰胺TEMPO)。 PEA聚合物共混物可以在可植入装置上形成涂层,其一个实例是支架。 涂层可任选地包括生物有益材料和/或任选地含有生物活性剂。 可植入装置可用于治疗或预防动脉粥样硬化,血栓形成,再狭窄,出血,血管解剖或穿孔之一,血管动脉瘤,易损斑块,慢性完全闭塞,跛行,静脉和人造移植物的吻合增殖等障碍 导管阻塞,输尿管阻塞,肿瘤阻塞及其组合。
Abstract:
The present invention generally encompasses a medical article, such as a medical device or coating comprising an agent or combination of agents, wherein the agent is distributed throughout a polymeric matrix. The polymeric matrix comprises an agent and a poly(ester amide) having a design that was preselected to provide a predetermined release rate of the combination of agents from the medical article.
Abstract:
An electrotransport reservoir housing which contains, integrally formed therein, at least one region of conductive material which allows for a liquid and moisture tight barrier, while at the same time providing a means for conducting an electric current therethrough.
Abstract:
Injectable depot compositions are provided that include a polymer matrix having a plurality of bioerodible, biocompatible polymers wherein each polymer of the plurality of polymers has a specified average molecular weight, and the polymer matrix has a broad molecular weight distribution of the plurality of polymers; a solvent having a miscibility in water of less than or equal to 7 wt % at 25° C., in an amount effective to plasticize the polymer and form a gel therewith; and a beneficial agent. The compositions have substantially improved shear thinning behavior and reduced injection force, rendering the compositions readily implanted beneath a patient's body surface by injection.
Abstract:
A stent is coated by ejecting droplets of a coating substance from a reservoir containing a coating substance. A reservoir housing can have a plurality of reservoir compartments. A transducer is used to eject the coating substance from the reservoir. Energy from the transducer is focused at a meniscus or an interface between the coating substance and another coating substance in the reservoir.