Abstract:
This disclosure relates generally to the use of distributed system for computation, and more particularly, relates to a method and system for optimizing computation and communication resource while preserving security in the distributed device for computation. In one embodiment, a system and method of utilizing plurality of constrained edge devices for distributed computation is disclosed. The system enables integration of the edge devices like residential gateways and smart phone into a grid of distributed computation. The edged devices with constrained bandwidth, energy, computation capabilities and combination thereof are optimized dynamically based on condition of communication network. The system further enables scheduling and segregation of data, to be analyzed, between the edge devices. The system may further be configured to preserve privacy associated with the data while sharing the data between the plurality of devices during computation.
Abstract:
Signal analysis is applied in various industries and medical field. In signal analysis, wavelet analysis plays an important role. The wavelet analysis needs to identify a mother wavelet associated with an input signal. However, identifying the mother wavelet associated with the input signal in an automatic way is challenging. Systems and methods of the present disclosure provides signal analysis with automatic selection of wavelets associated with the input signal. The method provided in the present disclosure receives the input signal and a set of parameters associated with the signal. Further, the input signal is analyzed converted into waveform. The waveforms are analyzed to provide image units. Further, the image units are processed by a plurality of deep architectures. The deep architectures provides a set of comparison scores and a matching wavelet family is determined by utilizing the set of comparison scores.
Abstract:
A method for data partitioning in an internet-of-things (IoT) network is described. The method includes determining number of computing nodes in the IoT network capable of contributing in processing of a data set. At least one capacity parameter associated with each computing node in the IoT network and each communication link between a computing node and a data analytics system can be ascertained. The capacity parameter can indicate a computational capacity for each computing node and communication capacity for each communication link. An availability status, indicating temporal availability, of each of computing nodes and each communication link is determined. The data set is partitioned into subsets, based on the number of computing nodes, the capacity parameter and the availability status, for parallel processing of the subsets.
Abstract:
A system and method for offloading scalable robotic tasks in a mobile robotics framework. The system comprises a cluster of mobile robots and they are connected with a back-end cluster infrastructure. It receives scalable robotic tasks at a mobile robot of the cluster. The scalable robotics tasks include building a map of an unknown environment by using the mobile robot, navigating the environment using the map and localizing the mobile robot on the map. Therefore, the system estimate the map of an unknown environment and at the same time it localizes the mobile robot on the map. Further, the system analyzes the scalable robotics tasks based on computation, communication load and energy usage of each scalable robotic task. And finally the system priorities the scalable robotic tasks to minimize the execution time of the tasks and partitioning the SLAM with computation offloading in edge network and mobile cloud server setup.
Abstract:
Cloud robotics infrastructures generally support heterogeneous services that are offered by heterogeneous resources whose reliability or availability also varies widely with varying lifetime. For such systems, defining a static redundancy configuration for all services is difficult and often biased. Also, it is not feasible to define a redundancy configuration separately for each unique service. Therefore, in the present disclosure a trade-off between the two is ensured by providing At-most M-Modular Flexible Redundancy Model wherein an exact degree of redundancy is defined and is given to each service in a heterogeneous service environment and monitoring each task and subtask status to ensure that each subtask gets accomplished thereby enabling the tuning of the tradeoff between redundancy and cost and determining efficiency of the system by estimating number of resources utilized to complete specific subtask and comparing the resources utilization with the exact degree of redundancy defined.
Abstract:
A method comprises, receiving, at each of a plurality of computing devices, a task execution estimation request message from a central server, the task execution estimation request message comprising a worst-case execution time (WCET) corresponding to the computing device. The method further comprises, computing, by each of the plurality of computing devices, an estimate task execution time for the task based on the WCET and a state transition model corresponding to the computing device, wherein the state transition model indicates available processing resources corresponding to the computing device. Further, the method comprises transmitting, by each of the plurality of computing devices, the estimate task execution time to the central server for allocation of the task to a computing device from amongst the plurality of computing devices based on the estimate task execution time corresponding to the computing device.
Abstract:
Methods and devices for controlling execution of a data analytics application on a computing device are described. The devices include an alert app to prompt a user on system load and to recommend the user for proactively controlling the execution of a set of processes to reclaim computational resources required for execution of the data analytics application on the devices.
Abstract:
Described herein, are methods and devices for execution of a task in a grid computing system. According to an implementation, free time-slots are identified and durations of the free time-slots are estimated, by an edge device, for execution of a sub-task. The free time-slots are indicative of an idle state of the edge device. At least one computation capability parameter of the edge device is determined by the edge device for execution of a sub-task during the free time-slots. An advertisement profile having at least one free time-slot, and the duration and the at least one computation capability parameter associated with the at least one free time-slot is created by the edge device. The advertisement profile is provided by the edge device to grid servers in the grid computing system for partitioning a main task to create a sub-task executable by the edge device.