Abstract:
Pulse width modulation controller apparatus and techniques are presented for balancing output currents of DC-DC converter stages in a multi-stage DC-DC conversion system in which a reference current is provided according to an input voltage and the value of a connected resistor, and a correction current output signal is generated that represents the difference between an average converter stage load current and the local load current, with the on-time of the PWM output signal being generated by charging a capacitance using a charging current obtained by offsetting the reference current output signal with the correction current output signal.
Abstract:
Analog pulse width modulation (PWM) control circuits and techniques are presented for improving output voltage load transient response in controlling DC to DC conversion systems in which a transient detector circuit restarts a PWM carrier ramp waveform to initiate asynchronous injection of a pulse between the regular periodic PWM pulses in a fixed frequency pulse stream to mitigate the effect of output inductor energy depletion on output voltage.
Abstract:
Methods, apparatus, systems and articles of manufacture are disclosed to start converter into a pre-biased voltage. The disclosed methods, apparatus, systems and articles of manufacture provide an apparatus comprising: an error amplifier including a feedback network and a differential difference amplifier (DDA), the DDA coupled to a power converter, a voltage generator, and the feedback network coupled to the third input of the DDA, the fourth input of the DDA, and the output of the DDA; a multiplexer coupled to the voltage generator, the second input of the DDA, and the first input of the DDA; a first switch coupled in parallel to the feedback network; a second switch coupled to a delay cell and an oscillator; and a trigger including an output, the trigger coupled to the voltage generator, the power converter, and the output of the trigger coupled to the multiplexer, first switch, and the second switch.
Abstract:
A system includes an input voltage supply. The system also includes a switching converter coupled to the input voltage supply and configured to provide an output voltage based on a switch on-time. The system also includes a switch on-time controller for the switching converter. The switch on-time controller includes an analog-to-digital converter (ADC) and a delay line coupled to the ADC. The switch on-time controller also includes a delay line modulator coupled to the delay line and configured to determine an amount of times the delay line is used to determine the switch on-time.
Abstract:
Methods, apparatus, systems and articles of manufacture are disclosed that facilitate multiple modes of converter operation. An example apparatus includes a comparator configured to provide a first trigger signal to initiate a first pulse width modulated signal in a constant-on-time mode for a power converter, an oscillator configured to provide a second trigger signal to initiate a second pulse width modulated signal in a fixed frequency mode for the power converter, and a selector configured to receive a select signal, the selector configured to output the first trigger signal to a pulse width modulated signal generator to initiate the first pulse width modulated signal based on a first state of the select signal, and output the second trigger signal to the pulse width modulated signal generator to initiate the second pulse width modulated signal based on a second state of the select signal.
Abstract:
A pulse generator generates a square-wave pulsed signal that has a variable pulse width. The pulse width, which is defined by the delay through a delay line, varies in response to variations in an input voltage, as well as in response to phase differences between a reference clock signal and a trigger signal.
Abstract:
A control circuit configured to control a switching power supply including a ramp generator configured to generate a triangular waveform. A comparator is configured to generate a series of pulse width modulated (PWM) pulses at a first frequency and to regulate the switching power supply. The ramp generator includes a capacitor, a charging current source configured to provide a charging current to charge the capacitor, and a discharging current source configured to provide a discharging current to discharge the capacitor. The ramp generator also includes a closed loop current balancing current source configured to balance the currents from the charging and discharging current sources to establish a substantially zero direct current (DC) bias across the capacitor. The controller also includes a multi-phase configuration to provide a stackable multi-channel architecture.
Abstract:
In some examples, a circuit includes a state machine. The state machine is configured to operate in a buck state in which the state machine is configured to control a power converter to operate in a buck mode of operation at a first frequency. The state machine is configured to determine that a switch time of the power converter has decreased to within a threshold amount of a minimum switch time for the power converter. The state machine is configured to, responsive to the switch time of the power converter having decreased to within the threshold amount of the minimum switch time for the power converter, transition from the buck state to a reduced frequency buck state in which the state machine is configured to control the power converter to operate in the buck mode of operation at a second frequency that is less than the first frequency.
Abstract:
Methods, apparatus, systems and articles of manufacture are disclosed to calibrate a power converter. An example apparatus includes a comparator including a first input terminal, a second input terminal, and an output terminal, the first input terminal of the comparator configured to be coupled to a filter to receive a filtered feedback signal, the second input terminal of the comparator configured to receive a first voltage signal, and the output terminal of the comparator coupled to a node, an oscillator including an output terminal, and a voltage stepper including a first input terminal, a second input terminal, and an output terminal, the first input terminal of the voltage stepper configured to receive a second voltage signal, the second input terminal of the voltage stepper coupled to the output terminal of the oscillator, and the output terminal of the voltage stepper configured to be coupled to an error amplifier.
Abstract:
Methods, apparatus, systems and articles of manufacture are disclosed to start converter into a pre-biased voltage. The disclosed methods, apparatus, systems and articles of manufacture provide an apparatus comprising: an error amplifier including a feedback network and a differential difference amplifier (DDA), the DDA coupled to a power converter, a voltage generator, and the feedback network coupled to the third input of the DDA, the fourth input of the DDA, and the output of the DDA; a multiplexer coupled to the voltage generator, the second input of the DDA, and the first input of the DDA; a first switch coupled in parallel to the feedback network; a second switch coupled to a delay cell and an oscillator; and a trigger including an output, the trigger coupled to the voltage generator, the power converter, and the output of the trigger coupled to the multiplexer, first switch, and the second switch.