Abstract:
Implant-associated bacterial infections are one of the most serious complications in orthopedic surgery. Treatment of these infections often requires multiple operations, device removal, long-term systemic antibiotics, and extended rehabilitation, and is frequently ineffective, leading to worse clinical outcomes and increased financial costs. Silver nanoparticle/poly(DL-lactic-co-glycolic acid) (PLGA)-coated stainless steel alloy (SNPSA) was evaluated as a potential antimicrobial implant material. It was found that SNPSA exhibited strong antibacterial activity in vitro and ex vivo, and promoted MC3T3-E1 pre-osteoblasts proliferation and maturation in vitro. Furthermore, SNPSA implants induced osteogenesis while suppressing bacterial survival in contaminated rat femoral canals. The results indicate that SNPSA has simultaneous antimicrobial and osteoinductive properties that make it a promising therapeutic material in orthopedic surgery.
Abstract:
The present invention discloses methods and compositions for treating or ameliorating a condition associated with increased or decreased myofibroblast activities and use thereof.
Abstract:
The present invention provides a method of treating a disorder using a fibromodulin (FMOD) reprogrammed (FReP) cell. The method comprises administering locally to a human being the FReP cell to a site in need thereof of the human being.
Abstract:
The present invention discloses methods and compositions for treating or ameliorating a condition associated with increased or decreased myofibroblast activities and use thereof.
Abstract:
The present invention discloses methods and compositions for treating or ameliorating a condition associated with increased or decreased myofibroblast activities and use thereof.
Abstract:
The present invention provides a method of forming a fibromodulin (FMOD) reprogrammed (FReP) cell. The method comprises steps of treating a human cell with a cell culture medium comprising fibromodulin (FMOD) for a period ranging from a day to a month, and changing the cell culture medium regularly until a FMOD reprogrammed (FreP) cell forms; wherein the FreP cell expresses NANOG and does not form teratoma, and wherein the human cell is a fibroblastic cell.
Abstract:
Disclosed herein is a method of making a fibromodulin peptide (FMOD-P), compositions thereof, and methods of using the FMOD-P and the compositions thereof for treating or ameliorating a condition.
Abstract:
Implant-associated bacterial infections are one of the most serious complications in orthopedic surgery. Treatment of these infections often requires multiple operations, device removal, long-term systemic antibiotics, and extended rehabilitation, and is frequently ineffective, leading to worse clinical outcomes and increased financial costs. Silver nanoparticle/poly(DL-lactic-co-glycolic acid) (PLGA)-coated stainless steel alloy (SNPSA) was evaluated as a potential antimicrobial implant material. It was found that SNPSA exhibited strong antibacterial activity in vitro and ex vivo, and promoted MC3T3-E1 pre-osteoblasts proliferation and maturation in vitro. Furthermore, SNPSA implants induced osteogenesis while suppressing bacterial survival in contaminated rat femoral canals. The results indicate that SNPSA has simultaneous antimicrobial and osteoinductive properties that make it a promising therapeutic material in orthopedic surgery.