Abstract:
The present invention relates to compositions comprising isolated, single stranded RNA molecules and pharmaceutically acceptable carriers suitable for injection. The present invention relates to methods for stimulating an immune response and treating tumors. The present invention further relates to kits comprising a cancer vaccine and compositions of the present invention for use as an adjuvant to cancer vaccines.
Abstract:
The present application demonstrates that sirtuin 4 (SIRT4) acts as a cellular lipoamidase that negatively regulates pyruvate dehydrogenase complex (PDHC) activity through hydrolysis of its lipoamide cofactors.
Abstract:
The present application demonstrates that sirtuin 4 (SIRT4) acts as a cellular lipoamidase that negatively regulates pyruvate dehydrogenase complex (PDHC) activity through hydrolysis of its lipoamide cofactors.
Abstract:
A method is provided to improve virus production is an infected host cell by culturing the infected cell in an effective amount of alpha-ketoglutarate.
Abstract:
Alterations of certain metabolite concentrations and fluxes that occur in response to viral infection are described. Host cell enzymes in the involved metabolic pathways are selected as targets for intervention; i.e., to restore metabolic flux to disadvantage viral replication, or to further derange metabolic flux resulting in “suicide” of viral-infected cells (but not uninfected cells) in order to limit viral propagation. While any of the enzymes in the relevant metabolic pathway can be selected, pivotal enzymes at key control points in these metabolic pathways are preferred as candidate antiviral drug targets. Inhibitors of these enzymes are used to reverse, or redirect, the effects of the viral infection. Drug candidates are tested for antiviral activity using screening assays in vitro and host cells, as well as in animal models. Animal models are then used to test efficacy of candidate compounds in preventing and treating viral infections. The antiviral activity of enzyme inhibitors is demonstrated.
Abstract:
Alterations of certain metabolite concentrations and fluxes that occur in response to viral infection are described. Host cell enzymes in the involved metabolic pathways are selected as targets for intervention; i.e., to restore metabolic flux to disadvantage viral replication, or to further derange metabolic flux resulting in “suicide” of viral-infected cells (but not uninfected cells) in order to limit viral propagation. While any of the enzymes in the relevant metabolic pathway can be selected, pivotal enzymes at key control points in these metabolic pathways are preferred as candidate antiviral drug targets. Inhibitors of these enzymes are used to reverse, or redirect, the effects of the viral infection. Drug candidates are tested for antiviral activity using screening assays in vitro and host cells, as well as in animal models. Animal models are then used to test efficacy of candidate compounds in preventing and treating viral infections. The antiviral activity of enzyme inhibitors is demonstrated.
Abstract:
This document relates to compounds useful for modulating sirtuin enzymes. For example, the compounds provided herein are useful as broad spectrum antiviral agents. In addition, the compounds provided herein may be used in the treatment of other disorders associated with sirtuin enzymes, such as diseases related to aging and stress, blood clotting disorders, cancer, cardiovascular diseases, diabetes, inflammation, neurodegenerative diseases, and obesity.