Abstract:
A stator and a rotary electric machine include a stator core including a plurality of stacked annular electromagnetic steel plates with coupling portions. The coupling portions are arranged with a pitch of an integral multiple of a central angle. The central angle is defined as an angle between two adjacent magnetic poles of the same polarity relative to a rotational center of the rotor. When a number of the coupling portions is an odd number, fixing portions are arranged with the same pitch as the pitch of the coupling portions, or with a pitch corresponding to a divisor of the pitch of the coupling portions. When a number of the coupling portions is an even number, the fixing portions are arranged with a pitch corresponding to a divisor of the pitch of the coupling portions, or a divisor of 180°.
Abstract:
A method for manufacturing a rotary electric machine rotor includes forming core block elements; inserting magnets in corresponding one of the magnet holes; forming magnet core blocks by injecting a molten resin into each of the magnet holes from above the magnet, solidifying the molten resin, and thereby forming a resin portion so as to integrate each of the core block elements and the magnets. End surfaces of the magnets are exposed on a first end surface; and the molten resin is injected at a second end surface. The method also includes forming a rotor by stacking and integrating plural magnet core blocks, the plural magnet core blocks being stacked such that first end surfaces of two magnet core blocks that are disposed at both ends in an axial direction constitute end surfaces at both ends of the rotor in the axial direction.
Abstract:
Stator for rotary electric machine has stator core and stator coil. The stator core has plural slots. The stator coil has a one-side conductor segment, a first other-side conductor segment, and a second other-side conductor segment. In the one-side conductor segment, a first leg and a second leg are inserted in first and second slots from one axial end side of the stator core. In the first other-side conductor segment, a third leg is inserted in the first slot from another axial end side of the stator core. In the second other-side conductor segment, a fourth leg is inserted in the second slot from the other axial end side of the stator core. The stator coil is formed such that the opposing legs are joined in each of the slots and a plurality of the one-side conductor segment and a plurality of the other-side conductor segment are sequentially joined.
Abstract:
A rotating electric machine includes a rotor having a rotor core, a stator having a stator core and a stator coil, a first rotating shaft member having a first flange portion and a first shaft portion, a second rotating shaft member having a second flange portion and a second shaft portion, and a fastening device that fastens the first and second rotating shaft members, in a condition where the rotor core is sandwiched between the first and second flange portions, from opposite sides of the rotor core in an axial direction.
Abstract:
A rotary electric machine includes: a rotary shaft member; first and second rotor including first and second rotor core, respectively, including first and second permanent magnets having first and second polarity, first and second magnet-based magnetic pole portions having the first and the second polarities and being formed by the first and the second permanent magnets, and first and second iron core portions having the second and the first polarities and being formed by iron pole portions of the first and the second rotor core, are alternately arranged in a circumferential direction of the first rotor core; a stator; and a field yoke. Further, the first magnet-based magnetic pole portion and the second iron pole portion face each other and the first iron pole portion and the second magnet-based magnetic pole portion face each other in the axial direction.
Abstract:
A rotary electric machine equipped with a magnetic flux variable mechanism includes a case body, a mover moving upon receipt of centrifugal force, a magnetic flux short circuit member, a cam member, and biasing springs. The cam member includes a cam surface so as to face the mover and make contact with the mover, and the cam member converts a radial movement of the mover received by the cam surface into an axial movement of the magnetic flux short circuit member. The biasing springs give a biasing force to the magnetic flux short circuit member in a direction distanced from an axial end surface of the rotor core, so as to determine a position of the magnetic flux short circuit member along the axial direction in a state where the biasing force is balanced with the centrifugal force applied to the mover via the cam member.
Abstract:
A rotor for a rotating electric machine includes: a rotor core having magnet holes; magnets inserted in the magnet holes of the rotor core. Each of the magnets includes two first surfaces respectively facing outward and inward of the rotor radial direction, and two second surfaces respectively facing one side and the other side of the rotor circumferential direction. Both ends in the rotor axial direction of at least one first surface of the two first surfaces are covered with electric insulating films, and a lateral surface region between both ends of the one first surface that are covered with the electric insulating films, and the two second surfaces are covered with no electric insulating films.
Abstract:
A rotor includes a rotor core and a permanent magnet. A core refrigerant passage is configured to guide refrigerant supplied from a shaft refrigerant passage to an outer peripheral end of the rotor core. The first refrigerant passage extends from an inner peripheral end of the rotor core to a position inside the permanent magnet. The first refrigerant passage is placed at a position deviating from a q-axis of the rotary electric machine in a circumferential direction. The second refrigerant passage is provided on the q-axis. The second refrigerant passage extends from the outer peripheral end of the rotor core toward an inner peripheral side in the rotor core. The third refrigerant passage configured to provide communication between the first refrigerant passage and the second refrigerant passage, the third refrigerant passage being placed at a position deviating from the second refrigerant passage in a rotor axis direction.
Abstract:
A rotary electric machine stator includes a stator core, a multi-layer winding coil, a first insulating resin layer, and a second insulating resin layer. The multi-layer winding coil is arranged with a predetermined number of steps in the radial direction of the teeth. Each step of the multi-layer winding coil includes a lowest layer coil of one winding and a surface layer coil of another winding. The first insulating resin layer is arranged between the teeth and the lowest layer coil, or between an insulator that is fixed to the teeth and the lowest layer coil. The second insulating resin layer is arranged locally at curved portions of the multi-layer winding coil that correspond to corner portions of four corners of a rectangular cross-section of the teeth. The second insulating resin layer is arranged extending across a plurality of steps of the multi-layer winding coil.
Abstract:
A method for manufacturing a stator of a rotary electric machine includes: assembling an insulator and a stator coil to a tooth; and after assembling, pouring a liquid adhesive into an opening of the insulator from an outer side of the stator coil so as to fix the stator coil to a stator core.