Abstract:
A method of manufacturing a negative electrode for a nonaqueous electrolyte secondary battery includes: preparing a copper foil having a first main surface and a second main surface that are opposite sides of the copper foil; obtaining a granulated body by mixing a negative electrode active material, a thickener, a binder, and a solvent with each other to obtain a mixture and by granulating the mixture; obtaining a first negative electrode mixture layer by pressing the granulated body; arranging the first negative electrode mixture layer on the first main surface; and softening the copper foil by bringing the second main surface into contact with a heated roller in a state where the first negative electrode mixture layer is arranged on the first main surface. A temperature of the heated roller is a recrystallization temperature of the copper foil or higher.
Abstract:
The separator is used in a battery. The separator includes a porous film and a columnar filler. The porous film is made of resin. The columnar filler is made of insulating ceramic. The columnar filler is filled in the porous film. The axial direction of the columnar filler is in line with the thickness direction of the porous film.
Abstract:
A negative electrode for a non-aqueous electrolyte secondary battery of the present disclosure includes a negative electrode current collector, a negative electrode composite material layer formed on the surface of the negative electrode current collector. The negative electrode composite material layer includes a negative electrode active material containing silicon oxide and heat expandable microcapsules. The ratio of silicon oxide to the total amount of the negative electrode active material is 30 mass % or less. The blending ratio of the heat expandable microcapsules to the total amount of the negative electrode active material is 0.5 mass % or more. The ratio of the heat expandable microcapsules in contact with silicon oxide to the amount of the heat expandable microcapsules contained in the negative electrode composite material layer is 70 mass % or more.
Abstract:
A method of manufacturing a non-aqueous electrolyte solution secondary battery includes: (A) preparing a first composite material by mixing a first positive electrode active material, a first conductive material and a first binder; (B) preparing a second composite material by mixing a second positive electrode active material, a second conductive material and a second binder; and (C) manufacturing a positive electrode by forming a positive electrode composite layer including the first composite material and the second composite material. The first positive electrode active material has an average discharge potential lower than that of the second positive electrode active material. The first conductive material has a first OAN. The second conductive material has a second OAN. A ratio of the second OAN to the first OAN is 1.3 or more and 2.1 or less. A sum of the first OAN and the second OAN is 31.64 ml/100 g or less.
Abstract:
A secondary battery includes a wound electrode assembly in which a positive electrode sheet, a negative electrode sheet and a separator are stacked and wound. The positive electrode sheet is provided with a long positive electrode current collector and a positive electrode active material layer. The positive electrode active material layer is disposed on the positive electrode current collector. The negative electrode sheet is provided with a long negative electrode current collector and a negative electrode active material layer. The negative electrode active material layer is disposed on the negative electrode current collector. The separator is interposed between the positive electrode sheet and the negative electrode sheet. The negative electrode current collector has a first active material layer-free region at one edge of the negative electrode current collector in a winding direction of an axis of the wound electrode assembly. The first active material layer-free region is a region where the negative electrode active material layer is not formed. The positive electrode current collector has a second active material layer-free region at one edge of the positive electrode current collector in a winding direction of an axis of the wound electrode assembly. The second active material layer-free region is a region where the positive electrode active material layer is not formed. The negative electrode current collector and the positive electrode current collector are disposed, with the first active material layer-free region and the second active material layer-free region being projected toward opposite sides in the winding direction of the axis of the wound electrode assembly. A width of the negative electrode active material layer is wider than a width of the positive electrode active material layer and a bacterial cellulose is disposed in at least a surface layer of the negative electrode active material layer that faces the second active material layer-free region.
Abstract:
A positive electrode collector includes a main body layer and a surface layer. The surface layer is provided at least at a portion of a surface of the main body layer where the positive electrode mixture layer is provided, and is made of a carbon material. A first positive electrode active material is made of first lithium complex oxide having a layered crystal structure. A second positive electrode active material includes a particle made of second lithium complex oxide having an olivine crystal structure, a carbon film provided at least at a part of a surface of the particle, and alginic acid salt provided at least at a part of a surface of the carbon film. A conducting agent in the positive electrode mixture layer includes a carbon particle and alginic acid salt provided at least at a part of a surface of the carbon particle.