Abstract:
An inversion plate short-circuits the positive electrode external terminal and the negative electrode external terminal to each other by changing its position. A temperature sensitive member is disposed adjacent to the inversion plate on the side opposite to a direction in which the inversion plate changes its position. The volume of temperature sensitive member increases due to a rise in temperature. The temperature sensitive member contains aluminum phosphite and calcium carbonate.
Abstract:
A nonaqueous electrolyte secondary battery includes a positive electrode, a negative electrode, and a separator. The positive electrode includes a positive electrode current collector, a first positive electrode mixture layer that is provided on the positive electrode current collector, and a second positive electrode mixture layer that is provided on the first positive electrode mixture layer. The first positive electrode mixture layer includes a first positive electrode active material and a first conductive material. The second positive electrode mixture layer includes a second positive electrode active material and a second conductive material. The first positive electrode active material includes a lithium composite oxide having a layered crystal structure. The second positive electrode active material includes a lithium composite oxide having an olivine-type crystal structure. The second conductive material includes a conductive material having a higher crushing strength than the lithium composite oxide having an olivine-type crystal structure.
Abstract:
Provided is a separator for a battery in which, when a ratio of a total length of line segments (Sa), in which an arbitrary straight line (La) intersects with resin fibers (4), to a total length of the straight line (La) on a cross-section of the separator in a thickness direction (TD) is represented by s (%) and when a thickness of the separator is represented by d (μm), 0
Abstract:
A method for manufacturing an electrode sheet includes the steps of forming a granulated material by mixing an electrode active material, a cellulose derivative, a binder, and an aqueous solvent, and placing the granulated material in the form of a sheet on electrode current collector foil. The cellulose derivative is at least one selected from the group consisting of hydroxyethyl cellulose, hydroxypropyl cellulose, hydroxyethyl methylcellulose, and hydroxypropyl methylcellulose, and has 3.0 or more moles of substitution, which is an average number of hydroxy groups substituted per glucose unit.
Abstract:
A positive electrode collector includes a main body layer and a surface layer. The surface layer is provided at least at a portion of a surface of the main body layer where the positive electrode mixture layer is provided, and is made of a carbon material. A first positive electrode active material is made of first lithium complex oxide having a layered crystal structure. A second positive electrode active material includes a particle made of second lithium complex oxide having an olivine crystal structure, a carbon film provided at least at a part of a surface of the particle, and alginic acid salt provided at least at a part of a surface of the carbon film. A conducting agent in the positive electrode mixture layer includes a carbon particle and alginic acid salt provided at least at a part of a surface of the carbon particle.
Abstract:
The present teaching provides a lithium ion secondary battery particularly improved in durability against high-rate charging/discharging. The lithium ion secondary battery of the present teaching includes, in the negative electrode active material layer, a negative electrode active material formed of a graphite type carbon material having a graphite structure in at least a part thereof, and a conductive carbon material, which is different from the graphite type carbon material and is formed of a conductive amorphous carbon. The negative electrode active material has a bulk density of 0.5 g/cm3 or more and 0.7 g/cm3 or less, and a BET specific surface area of 2 m2/g or more and 6 m2/g or less. The conductive carbon material has a bulk density of 0.4 g/cm3 or less, and a BET specific surface area of 50 m2/g or less.
Abstract:
A nonaqueous electrolyte secondary battery includes a wound electrode body, and the wound electrode body includes two curved portions and a center flat portion which has flat surfaces. A positive electrode winding end, a negative electrode winding end, and separator winding ends are positioned on the same curved portion. The negative electrode winding end is arranged at an advanced position from the positive electrode winding end in a winding direction, and at least one of the separator winding ends is positioned at an advanced position from the negative electrode winding end in the winding direction. A distance a (mm) from the negative electrode winding end to the separator winding end and a distance b (mm) from the positive electrode winding end to the negative electrode winding end satisfy relationships 0.5≦a×(a+b)≦104 and 0≦b≦11.
Abstract:
Provided is a non-aqueous electrolyte secondary battery in which an increase in resistance is suppressed when high rate pulsed charging and discharging is repeatedly carried out. The non-aqueous electrolyte secondary battery provided by the present disclosure is provided with: a positive electrode; a negative electrode; a separator; and a non-aqueous electrolyte solution. The separator is provided with a separator base made of a non-woven fabric; a first resin layer provided on a surface of the separator base that faces the positive electrode; and a second resin layer provided on a surface of the separator base that faces the negative electrode. In addition, a resin matrix of the first resin layer is constituted from polytetrafluoroethylene or a copolymer containing polytetrafluoroethylene as a primary component, and a resin matrix of the second resin layer is constituted from poly(vinylidene fluoride) or a copolymer containing poly(vinylidene fluoride) as a primary component.
Abstract:
Provided is a secondary battery that exhibits excellent retention of an electrolyte solution in an electrode body and excellent high rate charging and discharging characteristics. A secondary battery provided by the present invention includes an electrode body, which has a positive electrode, a negative electrode and a separator that electrically isolates the positive electrode from the negative electrode, and an electrolyte solution. In addition, the secondary battery has a non-woven fabric layer between the separator and the positive electrode and/or between the separator and the negative electrode. At least some of the fibers that constitute the non-woven fabric layer have one non-through hole in each of the fibers, with the non-through hole having an opening in one end of the fiber in a length direction thereof and extending in the length direction of the fiber. The length (LW) from the opening of the non-through hole to the deepest part of the non-through hole in the length direction is 50% or higher of the entire length (LF) of the fiber.
Abstract:
A method of manufacturing a negative electrode for a nonaqueous electrolyte secondary battery includes: preparing a copper foil having a first main surface and a second main surface that are opposite sides of the copper foil; obtaining a granulated body by mixing a negative electrode active material, a thickener, a binder, and a solvent with each other to obtain a mixture and by granulating the mixture; obtaining a first negative electrode mixture layer by pressing the granulated body; arranging the first negative electrode mixture layer on the first main surface; and softening the copper foil by bringing the second main surface into contact with a heated roller in a state where the first negative electrode mixture layer is arranged on the first main surface. A temperature of the heated roller is a recrystallization temperature of the copper foil or higher.