Abstract:
A nonaqueous electrolyte secondary battery according to the present invention includes: an electrode body including a positive electrode including a positive-electrode active material layer; an external terminal connected to the electrode body; a nonaqueous electrolyte including a gas generant, and a current interrupt device. A content of the gas generant is at least 4 mass %. The positive-electrode active material layer includes, as a positive-electrode active material, a complex oxide containing' at least zirconium (Zr) and calcium (Ca) as constituent elements. When a sum total of metal elements, except metal that becomes a charge carrier, in the complex oxide is 100 mol % in terms of a mole percentage, the complex oxide contains Zr from 0.1 mol % to 0.5 mol % inclusive and Ca from 0.1 mol % to 0.3 mol % inclusive.
Abstract:
A non-aqueous electrolyte secondary battery includes a positive electrode composite material layer containing first positive electrode active material particles containing a lithium nickel composite oxide, second positive electrode active material particles containing lithium iron phosphate, and a conductive material. A ratio of the second positive electrode active material particles in a total mass of the first positive electrode active material particles and the second positive electrode active material particles is not lower than 5 mass % and not higher than 20 mass %. A standard deviation σ representing distribution of an iron element satisfies a condition of 0.28≦σ≦0.52 when distribution of the iron element is determined by conducting area analysis with an electron probe microanalyzer in a cross-section of the positive electrode composite material layer.
Abstract:
A non-aqueous secondary battery includes a positive electrode composite material layer. In a cross-section in a direction of thickness of the positive electrode composite material layer, the positive electrode composite material layer includes a first region including one end portion in a direction intersecting with the direction of thickness, a second region including the other end portion, and a third region lying between the first region and the second region. The first region is composed of a first composite material containing lithium iron phosphate and lithium nickel cobalt manganese composite oxide, and the second region is composed of a second composite material containing lithium iron phosphate and lithium nickel cobalt manganese composite oxide. The third region is composed of a third composite material containing lithium nickel cobalt manganese composite oxide.
Abstract:
Provided is a non-aqueous electrolyte secondary battery combining high battery performance in normal use and endurance against overcharge. The non-aqueous electrolyte secondary battery comprises a positive electrode, a negative electrode, and a non-aqueous electrolyte. The positive electrode comprises a positive electrode active material 16. Positive electrode active material 16 is formed of a particulate lithium composite oxide 16c comprising at least lithium, nickel, cobalt, manganese and tungsten; and a nickel oxide layer 16s formed on the lithium composite oxide surface. With the non-lithium metals in lithium composite oxide 16c being 100% by mole, tungsten accounts for 0.05% by mole or greater, but 2% by mole or less. With lithium composite oxide 16c being 100 parts by mass, the nickel oxide content is 0.01 part by mass or greater, but 2 parts by mass or less.
Abstract:
A method of manufacturing a non-aqueous electrolyte solution secondary battery includes: (A) preparing a first composite material by mixing a first positive electrode active material, a first conductive material and a first binder; (B) preparing a second composite material by mixing a second positive electrode active material, a second conductive material and a second binder; and (C) manufacturing a positive electrode by forming a positive electrode composite layer including the first composite material and the second composite material. The first positive electrode active material has an average discharge potential lower than that of the second positive electrode active material. The first conductive material has a first OAN. The second conductive material has a second OAN. A ratio of the second OAN to the first OAN is 1.3 or more and 2.1 or less. A sum of the first OAN and the second OAN is 31.64 ml/100 g or less.
Abstract:
Provided is a lithium ion secondary battery which has a low internal resistance in a low-SOC region and a sufficiently large amount of gas generated during overcharge. The lithium ion secondary battery disclosed herein includes an electrode body having a positive electrode and a negative electrode, and a nonaqueous electrolytic solution. The lithium ion secondary battery further includes a pressure-type safety mechanism. The nonaqueous electrolytic solution includes a gas generating agent. The positive electrode has a positive electrode active material layer including a positive electrode active material. The positive electrode active material includes a lithium transition metal composite oxide represented by LiNiaCobMncO2 wherein a, b and c satisfy the following conditions: 0.35≦a≦0.45, 0.15≦b≦0.25, 0.35≦c≦0.45, and a+b+c=1, and a lithium transition metal composite oxide represented by LiNixCoyMnzO2 wherein x, y and z satisfy the following conditions: 0.35≦x≦0.45, 0.45≦y≦0.55, 0.05≦z≦0.15, and x+y+z=1, and the mass ratio of the oxides is 60:40 to 85:15.
Abstract:
A nonaqueous electrolyte secondary battery includes a positive electrode, a negative electrode, and a separator. The positive electrode includes a positive electrode current collector, a first positive electrode mixture layer that is provided on the positive electrode current collector, and a second positive electrode mixture layer that is provided on the first positive electrode mixture layer. The first positive electrode mixture layer includes a first positive electrode active material and a first conductive material. The second positive electrode mixture layer includes a second positive electrode active material and a second conductive material. The first positive electrode active material includes a lithium composite oxide having a layered crystal structure. The second positive electrode active material includes a lithium composite oxide having an olivine-type crystal structure. The second conductive material includes a conductive material having a higher crushing strength than the lithium composite oxide having an olivine-type crystal structure.
Abstract:
A positive electrode mixture layer (12) includes a first layer (12a) that has a main surface MS and a second layer (12b) formed closer to the positive electrode current collector (11) side than the first layer (12a). A ratio of the volume of the first layer (12a) to the volume of the positive electrode mixture layer (12) is 20 to 75 vol %. The first layer (12a) contains lithium iron phosphate (LFP) (1) and lithium nickel cobalt manganese composite oxide (NCM) (2). A ratio of the mass of the LFP (1) to the total mass of the LFP (1) and the NCM (2) in the first layer (12a) is more than 0 and 80 mass % or less. The second layer (12b) contains NCM (2). A ratio of the mass of the LFP (1) to the total mass of the positive electrode active material in the positive electrode mixture layer (12) is 7.5 to 20 mass %. A maximum pore size of the first layer (12a) is 0.50 to 0.70 μm.
Abstract:
Provided is a non-aqueous electrolyte secondary battery which exhibits excellent energy density and excellent input/output density (and especially output density in low SOC regions). This invention discloses a non-aqueous electrolyte secondary battery that includes a positive electrode, a negative electrode and a non-aqueous electrolyte. The positive electrode includes a positive electrode current collector and a positive electrode active material layers formed on the positive electrode current collector. The positive electrode active material layer has two regions that are demarcated in a surface direction of the positive electrode current collector, which are a first region 14a containing mainly a positive active material of lithium iron phosphate, and a second region 14b containing mainly a positive active material of a lithium-transition metal composite oxide.
Abstract:
A positive electrode of a lithium-ion secondary battery contains first positive electrode active material particles and second positive electrode active material particles. The first positive electrode active material particles have a first composition represented by a compositional formula LiNix1Coy1Mnz1O2 (here, x1, y1, and z1 are numerical values satisfying 0