Abstract:
A back side illumination (BSI) image sensor with stacked grid shifting is provided. A pixel sensor is arranged within a semiconductor substrate. A metallic grid segment is arranged over the pixel sensor and has a metallic grid opening therein. A center of the metallic grid opening is laterally shifted from a center of the pixel sensor. A dielectric grid segment is arranged over the metallic grid and has a dielectric grid opening therein. A center of the dielectric grid opening is laterally shifted from the center of the pixel sensor. A method for manufacturing the BSI image sensor is also provided.
Abstract:
Systems and methods are provided for fabricating semiconductor device structures on a substrate. A first fin structure is formed on a substrate. A second fin structure is formed on the substrate. A first semiconductor material is formed on both the first fin structure and the second fin structure. A second semiconductor material is formed on the first semiconductor material on both the first fin structure and the second fin structure. The first semiconductor material on the first fin structure is oxidized to form a first oxide. The second semiconductor material on the first fin structure is removed. A first dielectric material and a first electrode are formed on the first fin structure. A second dielectric material and a second electrode are formed on the second fin structure.
Abstract:
Some embodiments relate to a die that has been formed by improved dicing techniques. The die includes a substrate which includes upper and lower substrate surfaces with a vertical substrate sidewall extending therebetween. The vertical substrate sidewall corresponds to an outermost edge of the substrate. A device layer is arranged over the upper substrate surface. A crack stop is arranged over an upper surface of the device layer and has an outer perimeter that is spaced apart laterally from the vertical substrate sidewall. The die exhibits a tapered sidewall extending downward through at least a portion of the device layer to meet the vertical substrate sidewall.
Abstract:
The present disclosure relates to a BSI image sensor having a color filter disposed between sidewalls of a metallic grid, and a method of formation. In some embodiments, the BSI image sensor has a pixel sensor located within a semiconductor substrate, and a layer of dielectric material overlying the pixel sensor. A metallic grid is separated from the semiconductor substrate by the layer of dielectric material, and a stacked grid is arranged over the metallic grid. The stacked grid abuts an opening that vertically extends from an upper surface of the stacked grid to a position that is laterally arranged between sidewalls of the metallic grid. A color filter can be arranged within the opening. By having the color filter vertically extend between sidewalls of the metallic grid, a distance between the color filter and the pixel sensor can be made small, thereby improving performance of the BSI image sensor.
Abstract:
A back side illumination (BSI) image sensor with a dielectric grid opening having a planar lower surface is provided. A pixel sensor is arranged within a semiconductor substrate. A metallic grid is arranged over the pixel sensor and defines a sidewall of a metallic grid opening. A dielectric grid is arranged over the metallic grid and defines a sidewall of the dielectric grid opening. A capping layer is arranged over the metallic grid, and defines the planar lower surface of the dielectric grid opening.
Abstract:
A back side illumination (BSI) image sensor with a dielectric grid opening having a planar lower surface is provided. A pixel sensor is arranged within a semiconductor substrate. A metallic grid is arranged over the pixel sensor and defines a sidewall of a metallic grid opening. A dielectric grid is arranged over the metallic grid and defines a sidewall of the dielectric grid opening. A capping layer is arranged over the metallic grid, and defines the planar lower surface of the dielectric grid opening.
Abstract:
A back side illumination (BSI) image sensor with a dielectric grid opening having a planar lower surface is provided. A pixel sensor is arranged within a semiconductor substrate. A metallic grid is arranged over the pixel sensor and defines a sidewall of a metallic grid opening. A dielectric grid is arranged over the metallic grid and defines a sidewall of the dielectric grid opening. A capping layer is arranged over the metallic grid, and defines the planar lower surface of the dielectric grid opening.
Abstract:
Some embodiments relate to a method of dicing a semiconductor wafer. The semiconductor wafer that includes a device structure that is formed within a device layer. The device layer is arranged within an upper surface the device layer. A crack stop is formed, which surrounds the device structure and reinforces the semiconductor wafer to prevent cracking during dicing. A laser is used to form a groove along a scribe line outside the crack stop. The groove extends completely through the device layer, and into an upper surface region of the semiconductor wafer. The semiconductor wafer is then cut along the grooved scribe line with a cutting blade to singulate the semiconductor wafer into two or more die. By extending the groove completely through the device layer, the method avoids damage to the device layer caused by the blade saw, and thus avoids an associated performance degradation of the device structure.
Abstract:
The present disclosure relates to a Fin field effect transistor (FinFET) device having epitaxial enhancement structures, and an associated method of fabrication. In some embodiments, the FinFET device has a semiconductor substrate having a plurality of isolation regions overlying the semiconductor substrate. A plurality of three-dimensional fins protrude from a top surface of the semiconductor substrate at locations between the plurality of isolation regions. Respective three-dimensional fins have an epitaxial enhancement structure that introduces a strain into the three-dimensional fin. The epitaxial enhancement structures are disposed over a semiconductor material within the three-dimensional fin at a position that is more than 10 nanometers above a bottom of an adjacent isolation region. Forming the epitaxial enhancement structure at such a position provides for sufficient structural support to avoid isolation region collapse.