Abstract:
A back side illumination (BSI) image sensor with a dielectric grid opening having a planar lower surface is provided. A pixel sensor is arranged within a semiconductor substrate. A metallic grid is arranged over the pixel sensor and defines a sidewall of a metallic grid opening. A dielectric grid is arranged over the metallic grid and defines a sidewall of the dielectric grid opening. A capping layer is arranged over the metallic grid, and defines the planar lower surface of the dielectric grid opening.
Abstract:
Some embodiments relate to a die that has been formed by improved dicing techniques. The die includes a substrate which includes upper and lower substrate surfaces with a vertical substrate sidewall extending therebetween. The vertical substrate sidewall corresponds to an outermost edge of the substrate. A device layer is arranged over the upper substrate surface. A crack stop is arranged over an upper surface of the device layer and has an outer perimeter that is spaced apart laterally from the vertical substrate sidewall. The die exhibits a tapered sidewall extending downward through at least a portion of the device layer to meet the vertical substrate sidewall.
Abstract:
A back side illumination (BSI) image sensor with a dielectric grid opening having a planar lower surface is provided. A pixel sensor is arranged within a semiconductor substrate. A metallic grid is arranged over the pixel sensor and defines a sidewall of a metallic grid opening. A dielectric grid is arranged over the metallic grid and defines a sidewall of the dielectric grid opening. A capping layer is arranged over the metallic grid, and defines the planar lower surface of the dielectric grid opening.
Abstract:
A back side illumination (BSI) image sensor with stacked grid shifting is provided. A pixel sensor is arranged within a semiconductor substrate. A metallic grid segment is arranged over the pixel sensor and has a metallic grid opening therein. A center of the metallic grid opening is laterally shifted from a center of the pixel sensor. A dielectric grid segment is arranged over the metallic grid and has a dielectric grid opening therein. A center of the dielectric grid opening is laterally shifted from the center of the pixel sensor. A method for manufacturing the BSI image sensor is also provided.
Abstract:
A back side illumination (BSI) image sensor with a dielectric grid opening having a curved lower surface is provided. A pixel sensor is arranged within a semiconductor substrate. A metallic grid is arranged over the pixel sensor and defines a sidewall of a metallic grid opening. A dielectric grid is arranged over the metallic grid and defines a sidewall of the dielectric grid opening. A capping layer is arranged over the metallic grid, and defines the curved lower surface of the dielectric grid opening. A method for manufacturing the BSI image sensor is also provided.
Abstract:
Some embodiments relate to a method of dicing a semiconductor wafer. The semiconductor wafer that includes a device structure that is formed within a device layer. The device layer is arranged within an upper surface the device layer. A crack stop is formed, which surrounds the device structure and reinforces the semiconductor wafer to prevent cracking during dicing. A laser is used to form a groove along a scribe line outside the crack stop. The groove extends completely through the device layer, and into an upper surface region of the semiconductor wafer. The semiconductor wafer is then cut along the grooved scribe line with a cutting blade to singulate the semiconductor wafer into two or more die. By extending the groove completely through the device layer, the method avoids damage to the device layer caused by the blade saw, and thus avoids an associated performance degradation of the device structure.
Abstract:
A back side illumination (BSI) image sensor with a dielectric grid opening having a planar lower surface is provided. A pixel sensor is arranged within a semiconductor substrate. A metallic grid is arranged over the pixel sensor and defines a sidewall of a metallic grid opening. A dielectric grid is arranged over the metallic grid and defines a sidewall of the dielectric grid opening. A capping layer is arranged over the metallic grid, and defines the planar lower surface of the dielectric grid opening.
Abstract:
A method includes forming Shallow Trench Isolation (STI) regions in a semiconductor substrate and a semiconductor strip between the STI regions. The method also include replacing a top portion of the semiconductor strip with a first semiconductor layer and a second semiconductor layer over the first semiconductor layer. The first semiconductor layer has a first germanium percentage higher than a second germanium percentage of the second semiconductor layer. The method also includes recessing the STI regions to form semiconductor fins, forming a gate stack over a middle portion of the semiconductor fin, and forming gate spacers on sidewalls of the gate stack. The method further includes forming fin spacers on sidewalls of an end portion of the semiconductor fin, recessing the end portion of the semiconductor fin, and growing an epitaxial region over the end portion of the semiconductor fin.
Abstract:
A back side illumination (BSI) image sensor with a dielectric grid opening having a curved lower surface is provided. A pixel sensor is arranged within a semiconductor substrate. A metallic grid is arranged over the pixel sensor and defines a sidewall of a metallic grid opening. A dielectric grid is arranged over the metallic grid and defines a sidewall of the dielectric grid opening. A capping layer is arranged over the metallic grid, and defines the curved lower surface of the dielectric grid opening. A method for manufacturing the BSI image sensor is also provided.
Abstract:
A method includes forming Shallow Trench Isolation (STI) regions in a semiconductor substrate and a semiconductor strip between the STI regions. The method also include replacing a top portion of the semiconductor strip with a first semiconductor layer and a second semiconductor layer over the first semiconductor layer. The first semiconductor layer has a first germanium percentage higher than a second germanium percentage of the second semiconductor layer. The method also includes recessing the STI regions to form semiconductor fins, forming a gate stack over a middle portion of the semiconductor fin, and forming gate spacers on sidewalls of the gate stack. The method further includes forming fin spacers on sidewalls of an end portion of the semiconductor fin, recessing the end portion of the semiconductor fin, and growing an epitaxial region over the end portion of the semiconductor fin.