Abstract:
A method for integrating complementary metal-oxide-semiconductor (CMOS) devices with a microelectromechanical systems (MEMS) device using a flat surface above a sacrificial layer is provided. In some embodiments, a back-end-of-line (BEOL) interconnect structure is formed covering a semiconductor substrate, where the BEOL interconnect structure comprises a first dielectric region. A sacrificial layer is formed over the first dielectric region, and a second dielectric region is formed covering the sacrificial layer and the first dielectric region. A planarization is performed into an upper surface of the second dielectric region to planarize the upper surface. A MEMS structure is formed on the planar upper surface of the second dielectric region. A cavity etch is performed into the sacrificial layer, through the MEMS structure, to remove the sacrificial layer and to form a cavity in place of the sacrificial layer. An integrated circuit (IC) resulting from the method is also provided.
Abstract:
A semiconductor structure for a microelectromechanical systems (MEMS) device is provided. A first substrate region includes an electrical isolation layer arranged over a top surface of the first substrate region. A second substrate region is arranged over the electrical isolation layer and includes a MEMS device structure arranged within the second substrate region. The MEMS device structure includes a fixed mass and a proof mass. A dielectric region is arranged over the electrical isolation layer around the fixed mass. A fixed mass electrode is arranged around the dielectric region, and extends through the second substrate region to the electrical isolation layer. An isolated electrode extends through the second substrate region and the electrical isolation layer to the first substrate region on an opposite side of the proof mass as the fixed mass electrode. The method of forming the semiconductor structure is also provided.
Abstract:
A semiconductor structure for a microelectromechanical systems (MEMS) device is provided. A first substrate region includes an electrical isolation layer arranged over a top surface of the first substrate region. A second substrate region is arranged over the electrical isolation layer and includes a MEMS device structure arranged within the second substrate region. The MEMS device structure includes a fixed mass and a proof mass. A dielectric region is arranged over the electrical isolation layer around the fixed mass. A fixed mass electrode is arranged around the dielectric region, and extends through the second substrate region to the electrical isolation layer. An isolated electrode extends through the second substrate region and the electrical isolation layer to the first substrate region on an opposite side of the proof mass as the fixed mass electrode. The method of forming the semiconductor structure is also provided.
Abstract:
A semiconductor structure for a microelectromechanical systems (MEMS) device is provided. A first substrate region includes an electrical isolation layer arranged over a top surface of the first substrate region. A second substrate region is arranged over the electrical isolation layer and includes a MEMS device structure arranged within the second substrate region. The MEMS device structure includes a fixed mass and a proof mass. A dielectric region is arranged over the electrical isolation layer around the fixed mass. A fixed mass electrode is arranged around the dielectric region, and extends through the second substrate region to the electrical isolation layer. An isolated electrode extends through the second substrate region and the electrical isolation layer to the first substrate region on an opposite side of the proof mass as the fixed mass electrode. The method of forming the semiconductor structure is also provided.
Abstract:
A sensor is made up of two substrates which are adhered together. A first substrate includes a pressure-sensitive micro-electrical-mechanical (MEMS) structure and a conductive contact structure that protrudes outwardly beyond a first face of the first substrate. A second substrate includes a complementary metal oxide semiconductor (CMOS) device and a receiving structure made up of sidewalls that meet a conductive surface which is recessed from a first face of the second substrate. A conductive bonding material physically adheres the conductive contact structure to the conductive surface and electrically couples the MEMS structure to the CMOS device.
Abstract:
Representative methods for sealing MEMS devices include depositing insulating material over a substrate, forming conductive vias in a first set of layers of the insulating material, and forming metal structures in a second set of layers of the insulating material. The first and second sets of layers are interleaved in alternation. A dummy insulating layer is provided as an upper-most layer of the first set of layers. Portions of the first and second set of layers are etched to form void regions in the insulating material. A conductive pad is formed on and in a top surface of the insulating material. The void regions are sealed with an encapsulating structure. At least a portion of the encapsulating structure is laterally adjacent the dummy insulating layer, and above a top surface of the conductive pad. An etch is performed to remove at least a portion of the dummy insulating layer.
Abstract:
A stacked semiconductor structure includes a first substrate. A multilayer interconnect is disposed over the first substrate. Metal sections are disposed over the multilayer interconnect. First bonding features are over the metal sections. A second substrate has a front surface. A cavity extends from the front surface into a depth D in the second substrate. A movable structure is disposed over the front surface of the second substrate and suspending over the cavity. The movable structure includes a dielectric membrane, metal units over the dielectric membrane and a cap dielectric layer over the metal units. Second bonding features are over the cap dielectric layer and bonded to the first bonding features. The second bonding features extend through the cap dielectric layer and electrically coupled to the metal units.
Abstract:
Various embodiments of the present disclosure are directed towards a microelectromechanical systems (MEMS) structure including an epitaxial layer overlying a MEMS substrate. The MEMS substrate comprises a moveable element arranged over a carrier substrate. The epitaxial layer has a higher doping concentration than the MEMS substrate. A plurality of contacts overlies the epitaxial layer. A first subset of the plurality of contacts overlies the moveable element. The plurality of contacts respectively has an ohmic contact with the epitaxial layer.
Abstract:
Various embodiments of the present disclosure are directed towards a microelectromechanical systems (MEMS) structure including an epitaxial layer overlying a MEMS substrate. The MEMS substrate comprises a moveable element arranged over a carrier substrate. The epitaxial layer has a higher doping concentration than the MEMS substrate. A plurality of contacts overlies the epitaxial layer. A first subset of the plurality of contacts overlies the moveable element. The plurality of contacts respectively has an ohmic contact with the epitaxial layer.
Abstract:
Structures and formation methods of a semiconductor device structure are provided. A semiconductor device structure includes a first dielectric layer and a second dielectric layer over a semiconductor substrate. A cavity penetrates through the first dielectric layer and the second dielectric layer. The semiconductor device structure also includes a first movable membrane between the first dielectric layer and the second dielectric layer. The first movable membrane is partially exposed through the cavity. The first movable membrane includes first corrugated portions arranged along an edge of the cavity.