Abstract:
Representative methods for sealing MEMS devices include depositing insulating material over a substrate, forming conductive vias in a first set of layers of the insulating material, and forming metal structures in a second set of layers of the insulating material. The first and second sets of layers are interleaved in alternation. A dummy insulating layer is provided as an upper-most layer of the first set of layers. Portions of the first and second set of layers are etched to form void regions in the insulating material. A conductive pad is formed on and in a top surface of the insulating material. The void regions are sealed with an encapsulating structure. At least a portion of the encapsulating structure is laterally adjacent the dummy insulating layer, and above a top surface of the conductive pad. An etch is performed to remove at least a portion of the dummy insulating layer.
Abstract:
The present disclosure relates to a semiconductor structure for a MEMS device. In some embodiments, the structure includes an interlayer dielectric (ILD) region positioned over a substrate. Further the structure includes an inter-metal dielectric region. The IMD region includes a passivation layer overlying a stacked structure. The stacked structure includes dielectric layers and etch stop layers that are stacked in an alternating fashion. Metal wire layers are disposed within the stacked structure of the IMD region. The structure also includes a sensing electrode electrically connected to the IMD region with an electrode extension via. The structure includes a MEMS substrate comprising a MEMS device having a soft mechanical structure positioned adjacent to the sensing electrode.
Abstract:
A microelectromechanical systems (MEMS) package with high gettering efficiency is provided. A MEMS device is arranged over a logic chip, within a cavity that is hermetically sealed. A sensing electrode is arranged within the cavity, between the MEMS device and the logic chip. The sensing electrode is electrically coupled to the logic chip and is a conductive getter material configured to remove gas molecules from the cavity. A method for manufacturing the MEMS package is also provided.
Abstract:
The present disclosure relates to a microelectromechanical systems (MEMS) package having two MEMS devices with different pressures, and an associated method of formation. In some embodiments, the (MEMS) package includes a device substrate and a cap substrate bonded together. The device substrate includes a first trench and a second trench. A first MEMS device is disposed over the first trench and a second MEMS device is disposed over the second trench. A first stopper is raised from a first trench bottom surface of the first trench but below a top surface of the device substrate and a second stopper is raised from a second trench bottom surface of the second trench but below the top surface of the device substrate. A first depth of the first trench is greater than a second depth of the second trench.
Abstract:
The present disclosure, in some embodiments, relates to an integrated chip structure. The integrated chip structure has a plurality of interconnect layers disposed within a dielectric structure over a substrate. A passivation layer is over the dielectric structure. A sensing electrode and a bonding electrode have bottom surfaces directly contacting the passivation layer. A microelectromechanical systems (MEMS) substrate is vertically separated from the sensing electrode. The bonding electrode is electrically connected to the MEMs substrate and to one or more of the plurality of interconnect layers. An electrode extension via is configured to electrically connect the sensing electrode to one or more of the plurality of interconnect layers.
Abstract:
The present disclosure relates to a microelectromechanical systems (MEMS) package having two MEMS devices with different pressures, and an associated method of formation. In some embodiments, the (MEMS) package includes a device substrate and a cap substrate bonded together. The device substrate includes a first trench and a second trench. A first MEMS device is disposed over the first trench and a second MEMS device is disposed over the second trench. A first stopper is raised from a first trench bottom surface of the first trench but below a top surface of the device substrate and a second stopper is raised from a second trench bottom surface of the second trench but below the top surface of the device substrate. A first depth of the first trench is greater than a second depth of the second trench.
Abstract:
The present disclosure relates to a method of forming a plurality of MEMs device having a plurality of chambers with different pressures on a substrate, and an associated apparatus. In some embodiments, the method is performed by providing a device wafer having a plurality of microelectromechanical system (MEMs) devices. A cap wafer is bonded onto the device wafer in a first ambient environment having a first pressure. The bonding forms a plurality of chambers abutting the plurality of MEMs devices, which are held at the first pressure. One or more openings are formed in one or more of the plurality of chambers. The one or more openings in the one or more of the plurality of chambers are then sealed in a different ambient environment having a different pressure, thereby causing the one or more of the plurality of chambers to be held at the different pressure.
Abstract:
Representative methods for sealing MEMS devices include depositing insulating material over a substrate, forming conductive vias in a first set of layers of the insulating material, and forming metal structures in a second set of layers of the insulating material. The first and second sets of layers are interleaved in alternation. A dummy insulating layer is provided as an upper-most layer of the first set of layers. Portions of the first and second set of layers are etched to form void regions in the insulating material. A conductive pad is formed on and in a top surface of the insulating material. The void regions are sealed with an encapsulating structure. At least a portion of the encapsulating structure is laterally adjacent the dummy insulating layer, and above a top surface of the conductive pad. An etch is performed to remove at least a portion of the dummy insulating layer.
Abstract:
A semiconductor structure for a microelectromechanical systems (MEMS) device is provided. A first substrate region includes an electrical isolation layer arranged over a top surface of the first substrate region. A second substrate region is arranged over the electrical isolation layer and includes a MEMS device structure arranged within the second substrate region. The MEMS device structure includes a fixed mass and a proof mass. A dielectric region is arranged over the electrical isolation layer around the fixed mass. A fixed mass electrode is arranged around the dielectric region, and extends through the second substrate region to the electrical isolation layer. An isolated electrode extends through the second substrate region and the electrical isolation layer to the first substrate region on an opposite side of the proof mass as the fixed mass electrode. The method of forming the semiconductor structure is also provided.
Abstract:
A semiconductor structure for a microelectromechanical systems (MEMS) device is provided. A first substrate region includes an electrical isolation layer arranged over a top surface of the first substrate region. A second substrate region is arranged over the electrical isolation layer and includes a MEMS device structure arranged within the second substrate region. The MEMS device structure includes a fixed mass and a proof mass. A dielectric region is arranged over the electrical isolation layer around the fixed mass. A fixed mass electrode is arranged around the dielectric region, and extends through the second substrate region to the electrical isolation layer. An isolated electrode extends through the second substrate region and the electrical isolation layer to the first substrate region on an opposite side of the proof mass as the fixed mass electrode. The method of forming the semiconductor structure is also provided.