摘要:
A digital-to-analog converter circuit includes: a first subdecoder for receiving a first reference voltage group and selecting a reference voltage Vrk based upon an input digital signal; a second subdecoder for receiving a second reference voltage group and selecting a reference voltage Vr(k+1) based upon the input digital signal; a third subdecoder for receiving a third reference voltage group and selecting a reference voltage Vr(k+2) based upon the input digital signal; a fourth subdecoder for receiving the reference voltages that have been selected by respective ones of the first to third subdecoders, selecting two of these reference voltages (inclusive of selecting the same voltage redundantly) based upon an input digital signal, and outputting the selected two reference voltages; and an amplifier circuit for receiving the two reference voltages that have been selected by the fourth subdecoder and outputting a result of an operation applied to the two reference voltages.
摘要:
Disclosed is a differential amplifier which includes first and second input terminals, an output terminal, first and second differential pairs, and first and second current sources for supplying currents to the first and second differential pairs. The first differential pair has first and second inputs of an input pair connected to the first input terminal and the output terminal, respectively. The second differential pair has first and second inputs of an input pair connected to the second input terminal the output terminal, respectively. The differential amplifier further includes a load circuit connected to output pairs of the first and second differential pairs for outputting a signal obtained on combining outputs of the first and second differential pairs from at least one of a pair of connection nodes between the output pairs of the first and second differential pairs and the load circuit, an amplifier stage supplied with at least one signal at a connection node of the output pairs of the first and second differential pairs and the load circuit to output a voltage at the output terminal, and a current control circuit controlling the first and second current sources for controlling the ratio of currents supplied to the first and second differential pairs.
摘要:
Disclosed is a differential amplifier of a multi-level output type comprising a load circuit including a diode-connected first transistor with a source thereof connected to a power supply and a second transistor with a source thereof connected to the power supply and connected to a gate of the first transistor through a capacitor, a differential pair including a third transistor and a fourth transistor with sources thereof connected in common and drains thereof connected to drains of the first and second transistors, respectively, a current source for supplying a current to the differential pair, a first switch connected between a gate of the second transistor and a drain of the fourth transistor, an amplifier with an input thereof connected to a drain of the second transistor and an output thereof connected to an output terminal, a second switch connected between a gate of the fourth transistor and a first input terminal, a third switch connected between the gate of the fourth transistor and a third input terminal, a fourth switch connected between a gate of the third transistor and a second input terminal, and a fifth switch connected between the gate of the third transistor and the output terminal. Switching control between a first state where the first, second and fourth switches are turned on and the third and fifth switches are turned off and a second state where the first and second fourth switches are turned off and the third and fifth switches are turned on is performed.
摘要:
A differential amplifier includes a first differential pair, a second differential pair, a load circuit, connected in common to the first and second differential pairs, and first and second current sources for supplying the current to the first and second differential pairs, and amplifies a signal responsive to a common output signal of the first and second differential pairs. One of differential inputs of the first differential pair is connected to a reference voltage. A data output period includes a first period and a second period. During the first period, voltages of first and second input terminals are input through first and fourth switches in the on-state to differential inputs of the second differential pair. The other of the differential inputs of the first differential pair is connected through a third switch in the on-state to an output terminal. An output voltage is stored in a capacitor C connected to the other differential input of the first differential pair. The first, third and fourth switches are turned off during the second period. One of the differential inputs of the second differential pair is connected through a second switch to the output terminal. The other differential input of the second differential pair is connected through a fifth switch to a third input terminal.
摘要:
To obtain an amplifier circuit capable of realizing low power consumption and high-precision output. A controlling unit controls each switch of an offset correction circuit to select one capacitor associated with a voltage level of an input signal selected by an input signal selection unit, have an offset voltage of an operational amplifier generated according to the voltage level of the input signal stored by the selected capacitor, and correct an output of the operational amplifier by using the offset voltage held by the selected capacitor.
摘要:
Disclosed is a digital-to-analog converting circuit (DAC) which in accordance with an m-bit digital signal, selects two reference voltages, inclusive of redundant selection of the same reference voltage (inclusive also of reference voltages other than adjacent voltages) out of a plurality of reference voltages and outputs a voltage level that is the result of interpolation from the two reference voltages. The plurality of reference voltages are grouped into first to (3S+1)th reference voltage groups (where S is an integer that is a power of 2). An ith reference voltage group [where i is 1 to (3S+1)] includes [3S×(j−1)+i]th reference voltages (where j=1, 2, . . . h, and h is a prescribed integer). The DAC has a decoder and an interpolation amplifier. The decoder includes first to (3S+1)th subdecoders provided in correspondence with the first to (3S+1)th reference voltage groups for selecting one reference voltage out of the plurality of reference voltages of respective ones of the corresponding reference voltage groups in accordance with values of a first bit group on a higher order side of the input digital signal; and a (3S+1)-input and 2-output subdecoder for selecting two reference voltages, inclusive of redundant selection of the same reference voltage, out of (3S+1) reference voltages selected by the respective first to (3S+1)th subdecoders, in accordance with values of a second bit group on a lower order side of the input digital signal, and outputting the selected two reference voltages. The interpolation amplifier outputs a voltage level obtained by interpolating the two reference voltages with an interpolation ratio 1:1.
摘要:
Disclosed is a level shift circuit that includes a first level shifter which is connected between an output terminal and a first power supply terminal that supplies a first voltage and sets the output terminal to a level of the first voltage when an input signal received at an input terminal assumes a first value; a second level shifter which is connected between the output terminal and a second power supply terminal that supplies a second voltage and sets the output terminal to a level of the second voltage when the input signal assumes a complementary value of the first value; and a feedback control unit that performs control of deactivating the first level shifter during a predetermined time interval including a point of time when the input signal is supplied when it is detected that the output terminal immediately before the input signal is received at the input terminal assumes the first voltage level. When the input signal supplied in the predetermined time interval assumes a value that sets the output terminal to the second voltage level, the second level shifter sets the output terminal to the second voltage level with the first level shifter deactivated.
摘要:
A differential amplifying circuit capable of reducing amplitude-difference deviation over a full range of grayscale voltages inclusive of voltages in the vicinity of power-supply voltage includes first and second differential pairs of mutually different polarities, in which the outputs of the differential pairs are coupled by a coupling stage. One of the first and second differential pairs receives an input signal from an input terminal and a feedback signal from an output terminal at a pair of inputs thereof, and the other differential pair receives reference signals (which may be of the same voltage), which have voltage levels that set the other differential pair transistors to an on-state, at a pair of inputs of the other differential pair.
摘要:
Disclosed is an output circuit including a connection switch and an operation unit. The connection switch receives first and second voltages from first and second terminals, respectively, selects and outputs the first voltage or the second voltage for first to third intermediate terminals, including selection of the same voltage and switches assignment of the first and second voltages to the first to third intermediate terminals responsive to a connection switching signal. The operation unit receives the voltages assigned to the first to third intermediate terminals and outputs to an output terminal a voltage obtained by performing a predetermined operation on the voltages.
摘要:
Disclosed is a Rail-to-Rail amplifier including a plurality of differential pairs of a first conductivity type and a plurality of differential amplifiers of a second conductivity type each with one of an input pair thereof constituting an input terminal, a differential amplifier that outputs an output voltage according to the range of provided supply voltage, a determination unit for determining whether to stop operations of the differential pairs of the first conductivity type or the second conductivity type according to a predetermined input signal, and a differential pair control unit for stopping the operations of the differential pairs of the first conductivity type or the second conductivity type according to the output signal of the determination unit.