摘要:
A method of manufacturing a magnetic head manufactures a magnetic head having a base, and a laminate stacked on the base and including a magneto-resistive device. The method mechanically polishes a surface of a structure including the base and the laminate close to a magnetic recording medium, wherein the surface of the structure includes an end face of the laminate including an end face of the magneto-resistive device and a surface of the base. Next, the method selectively etches a first region on the surface of the structure close to the magnetic recording medium, wherein the first region includes the surface of the base but does not include the end face of the magneto-resistive device. Subsequently, the method entirely etches the surface of the structure close to the magnetic recording medium.
摘要:
A method of manufacturing a magnetic head manufactures a magnetic head having a base, and a laminate stacked on the base and including a magneto-resistive device. The method mechanically polishes a surface of a structure including the base and the laminate close to a magnetic recording medium, wherein the surface of the structure includes an end face of the laminate including an end face of the magneto-resistive device and a surface of the base. Next, the method selectively etches a first region on the surface of the structure close to the magnetic recording medium, wherein the first region includes the surface of the base but does not include the end face of the magneto-resistive device. Subsequently, the method entirely etches the surface of the structure close to the magnetic recording medium.
摘要:
An MR element includes a free layer whose direction of magnetization changes in response to an external magnetic field. Two bias magnetic field applying layers are disposed adjacent to two side surfaces of the MR element. Each bias magnetic field applying layer includes a nonmagnetic intermediate layer, and a first magnetic layer and a second magnetic layer disposed to sandwich the intermediate layer. The first and second magnetic layers are antiferromagnetically exchange-coupled to each other through RKKY interaction.
摘要:
A magnetoresistive effect (MR) element, a thin-film magnetic head having the MR element, a method for manufacturing the MR element, and a method for manufacturing the thin-film magnetic head are disclosed. The MR element, which uses electric current in a direction perpendicular to layer planes, includes a lower electrode layer, a MR multilayered structure formed on the lower electrode layer, a magnetic domain controlling bias layer that is disposed on both sides of the MR multilayered structure along the track-width direction and is made of a material at least partially including an hcp structure, a metal layer made of a material having a bcc structure formed on the magnetic domain controlling bias layer and the MR multilayered structure to cover the magnetic domain controlling bias layer and the MR multilayered structure, and an upper electrode layer formed on the metal layer.
摘要:
A manufacturing method of an MR element in which current flows in a direction perpendicular to layer planes, includes a step of forming on a lower electrode layer an MR multi-layered structure with side surfaces substantially perpendicular to the layer lamination plane, a step of forming a first insulation layer on at least the side surfaces of the formed MR multi-layered structure, a step of forming a second insulation layer and a magnetic domain control bias layer on the lower electrode layer, and a step of forming an upper electrode layer on the MR multi-layered structure and the magnetic domain control bias layer.
摘要:
A thin-film magnetic head includes a lower magnetic shield layer, an MR multi-layered structure formed on the lower magnetic shield layer so that current flows in a direction perpendicular to surfaces of laminated layers, and an upper magnetic shield layer formed on the MR multi-layered structure. The lower magnetic shield layer consists of a first soft magnetic layer and a second soft magnetic layer laminated on and magnetically connected with the first soft magnetic layer. A part of an upper surface of the first soft magnetic layer outside both side ends in a track-width direction of the MR multi-layered structure is located lower in height than an upper surface within a region where the MR multi-layered structure is formed, of the lower magnetic shield layer. The second soft magnetic layer is formed outside both side ends in a track-width direction of the MR multi-layered structure.
摘要:
A manufacturing method of an MR element in which current flows in a direction perpendicular to layer planes, includes a step of forming on a lower electrode layer an MR multi-layered structure with side surfaces substantially perpendicular to the layer lamination plane, a step of forming a first insulation layer on at least the side surfaces of the formed MR multi-layered structure, a step of forming a second insulation layer and a magnetic domain control bias layer on the lower electrode layer, and a step of forming an upper electrode layer on the MR multi-layered structure and the magnetic domain control bias layer.
摘要:
A method is provided for manufacturing a magneto-resistive device. The magneto-resistive device is for reducing the deterioration in the characteristics of the device due to annealing. The magneto-resistive device has a magneto-resistive layer formed on one surface side of a base, and an insulating layer formed of two layers and deposited around the magneto-resistive layer. The layer of the insulating layer closest to the base is made of a metal or semiconductor oxide. This layer extends over end faces of a plurality of layers made of different materials from one another, which make up the magneto-resistive device, and is in contact with the end faces of the plurality of layers with the same materials.
摘要:
A parasitic capacity C4 generated between a slider substrate and the first shield layer with the first insulating layer as a capacity layer is made substantially equal to a parasitic capacity C2 occurring between a lower magnetic layer and the second shield layer with the third insulating layer as a capacity layer. Preferably, a connection is made between the lower magnetic layer and the slider substrate by a resistance of preferably 100 (Ω) or lower. Thus, it is possible to provide a thin-film magnetic head that can hold back deterioration in a reproducing device and the occurrence of errors due to crosstalk between a recording device and the reproducing device and extraneous noises.
摘要:
A composite thin-film magnetic head includes a substrate; a first insulation layer laminated on the substrate; an MR read head element formed on the first insulation layer and provided with a lower shield layer, an upper shield layer and an MR layer in which a sense current flows in a direction perpendicular to a surface of the MR layer through the upper shield layer and the lower shield layer; a second insulation layer laminated on the MR read head element; an inductive write head element formed on the second insulation layer and provided with a lower magnetic pole layer, a recording gap layer, an upper magnetic pole layer whose end portion is opposed to an end portion of the lower magnetic pole layer through the recording gap layer and a write coil; and a nonmagnetic conductive layer electrically conducted with the lower shield layer and opposed to the substrate in order to increase substantially countered area between the lower shield layer and the substrate.