Abstract:
The present invention provides a self-sensing tweezer device for micro and nano-scale manipulation, assembly, and surface modification, including: one or more elongated beams disposed in a first configuration; one or more oscillators coupled to the one or more elongated beams, wherein the one or more oscillators are operable for selectively oscillating the one or more elongated beams to form one or more “virtual” probe tips; and an actuator coupled to the one or more elongated beams, wherein the actuator is operable for selectively actuating the one or more elongated beams from the first configuration to a second configuration.
Abstract:
An apparatus for profiling the surface of a workpiece, including a probe adapted to make contact with the surface of a workpiece, a sensor for determining or deriving the force between the probe and the workpiece surface, an actuator that adjusts the position of the probe along an axis, which is generally perpendicular to the surface of the workpiece, in order to maintain a constant force between the probe and the surface, and a closed control loop, including a controller that controls the operation of the actuator based on information from the sensor.
Abstract:
The present invention provides standing wave fluidic and biological tools, including: at least one elongated fiber that has mesoscale (i.e. milliscale), microscale, nanoscale, or picoscale dimensions, the at least one elongated fiber having a first end and a second end; and an actuator coupled to the first end of the at least one elongated fiber, wherein the actuator is operable for applying oscillation cycles to the at least one elongated fiber in one or more directions, and wherein the actuator is operable for generating a standing wave in the at least one elongated fiber. These standing wave fluidic and biological tools are selectively disposed in a fluid to provide a function such as mixing the fluid, measuring the viscosity of the fluid, attracting particles in the fluid, shepherding particles in the fluid, providing propulsive force in the fluid, pumping the fluid, dispensing the fluid, sensing particles in the fluid, and detecting particles in the fluid, among others.
Abstract:
The present invention provides an apparatus and method for performing surface property measurements, such as workpiece hardness and other material property measurements, with in-process compensation for instrument frame distortion and the like. The apparatus includes a substantially rigid base; a stylus coupled to the substantially rigid base, the stylus configured and selectively positioned to interact with a surface of a specimen at points along a central axis of the stylus; a proximity detector sensor coupled to the substantially rigid base, the proximity detector sensor disposed at a predetermined distance from the surface of the specimen and operable for sensing the predetermined distance between the proximity detector sensor and the surface of the specimen; and a proximity detector actuator coupled to the substantially rigid base, the proximity detector actuator operable for maintaining the predetermined distance between the proximity detector sensor and the surface of the specimen as the substantially rigid base and the stylus are moved with respect to the surface of the specimen along the central axis of the stylus.
Abstract:
A closed loop motion control system employing at least one relaxor actuator which controls the position of a moving member having mass by controlling an electric field applied to the relaxor actuator. The actuator comprises a body of relaxor material dimensionally variable under the influence of the electric field applied in the form of a voltage to electrodes on at least two surfaces of the actuator. The voltage is applied in response to a feedback signal produced by at least one feedback sensor, which may be a displacement sensor or some other type of sensor. Thus, by constantly monitoring the displacement or other variable of the actuator device, the position of the moving member may be precisely controlled.