Abstract:
A control apparatus controls an actuator with a plurality of control signals, and includes a memory storing instructions, and a processor configured to execute the instructions to perform linear control to output a first operation amount based on a state amount of the actuator detected by a detector, perform nonlinear control to output a second operation amount based on the detected state amount, and output the plurality of control signals based on the first operation amount and the second operation amount.
Abstract:
Disclosed is a thermo-mechanical actuator (100) comprising a piezo¬electric module (110), the piezo-electric module comprising at least one piezo-electric element (120), wherein the thermo-mechanical actuator is configured to: •o receive a thermal actuation signal (132) for controlling a thermal behaviour of the piezo-electric module, or •o provide a thermal sensing signal (132) representative of a thermal state of the piezo-electric module, and, wherein the thermo-mechanical actuator is configured to: •o receive a mechanical actuation (134) signal for controlling a mechanical behaviour of the piezo-electric module, or •o provide a mechanical sensing signal (134) representative of a mechanical state of the piezo-electric module.
Abstract:
A driving circuit for driving a piezoelectric load, can include: a rechargeable power supply; a power stage circuit coupled between the rechargeable power supply and the piezoelectric load; where during a first operation interval of an operation period, the rechargeable power supply charges the piezoelectric load through the power stage circuit, such that a power supply voltage signal provided to the piezoelectric load in the first operation interval corresponds to a reference voltage in a first interval; and where during a second operation interval of the operation period, the piezoelectric load charges the rechargeable power supply through the power stage circuit, such that the power supply voltage signal in the second operation interval corresponds to the reference voltage in a second interval.
Abstract:
A processor applies a first driving signal having a first driving frequency to a first actuator, applies a second driving signal having a second driving frequency to a second actuator, generates a first angle detection signal by performing first frequency filter processing based on the first driving frequency on an output signal of a first angle detection sensor, generates a second angle detection signal by performing second frequency filter processing based on the second driving frequency on an output signal of a second angle detection sensor, derives a first angle, which is an angle of a mirror portion around a first axis, based on the first angle detection signal, derives a second angle, which is an angle of the mirror portion around a second axis, based on the second angle detection signal, adjusts the first driving signal based on the first angle, and adjusts the second driving signal based on the second angle.
Abstract:
A method of controlling a piezoelectric driving apparatus including a vibration section that has a piezoelectric element and a transmission section that transmits vibration of the vibration section to a driven body, and, by energization of the piezoelectric element, vibrates the vibration section in a combination of longitudinal vibration and bending vibration to cause the transmission section to perform an elliptical motion and to move the driven body by the elliptical motion, the method of controlling the piezoelectric driving apparatus including switching, according to an external force received by the driven body, a drive algorithm of the piezoelectric driving apparatus between a first drive mode in which a separation amplitude, which is an amplitude of the longitudinal vibration, is changed while a feed amplitude, which is an amplitude of the bending vibration, is constant and a second drive mode in which both the feed amplitude and the separation amplitude are changed.
Abstract:
An actuation device comprises at least one electroactive polymer (EAP) layer (52) attached to a carrier (50) and a mechanical structure (56, 58) which defines at least two stable states. The EAP layer is adapted, when driven, to interact with the mechanical structure to switch between the at least two stable states, wherein the mechanical structure retains the electroactive polymer layer in the selected stable state in a non-driven state. In this way, two or more stable states for the device are defined, which can be retained when the EAP is no longer driven.
Abstract:
A stick-slip stage device includes a carriage assembly configured to support a payload, the carriage assembly comprising at least three piezoelectric stick-slip actuators each having one or more contact points. At least two rails are positioned on opposing sides of the carriage assembly and configured to interact with one or more of the contact points to form a guideway for movement of the carriage assembly. A fixed structure connects the at least two rails and is configured to generate a friction force between the at least two rails and one or more of the contact points of the at least three piezoelectric stick-slip actuators. A method of making a stick-slip stage device is also disclosed.
Abstract:
A control apparatus of a vibration actuator performs control of the vibration actuator using a control amount calculated using both of a first deviation which is a difference between a command value and a relative position, and a gain changed in accordance with a second deviation which is a difference between a target position and the relative position, so as to reduce the gain in accordance with reduction of the second deviation.
Abstract:
When stopping a vibration type actuator at a final target stopping position, driving frequency and phase difference of AC signals input to a piezoelectric element are set in accordance with a first deviation obtained from a command position sequentially determined and a relative position of a vibrating member and driven element, and also pulse duty is adjusted in accordance with a second deviation obtained from a final target stopping position and the relative position.
Abstract:
Provided is a control apparatus of a vibration-type actuator for generating an elliptical motion of contact portions by a common alternating current including a frequency determining unit for setting a frequency of the alternating current. The frequency determining unit sets the frequency of the alternating current for changing an ellipticity of the elliptical motion, within a frequency range such that ellipticity changing frequency ranges set for the vibrators are overlapped, and the ellipticity changing frequency ranges are set for the vibrators as frequency ranges between an upper limit and a lower limit, such that the lower limit is a maximum resonant frequency at a time of changing the ellipticity, and the upper limit is larger than the lower limit and is a maximum frequency for the relative movement of the driving member.