Abstract:
To enable efficient tracking of transactions, an acknowledgement expected signal is used to give the cache coherent interconnect a hint for whether a transaction requires coherent ownership tracking. This signal informs the cache coherent interconnect to expect an ownership transfer acknowledgement signal from the initiating master upon read/write transfer completion. The cache coherent interconnect can therefore continue tracking the transaction at its point of coherency until it receives the acknowledgement from the initiating master only when necessary.
Abstract:
This invention mitigates these deadlocking issues by a adding a separate non-blocking pipeline for snoop returns. This separate pipeline would not be blocked behind coherent requests. This invention also repartitions the master initiated traffic to move cache evictions (both with and without data) and non-coherent writes to the new non-blocking channel. This non-blocking pipeline removes the need for any coherent requests to complete before the snoop request can reach the memory controller. Repartitioning cache initiated evictions to the non-blocking pipeline prevents deadlock when snoop and eviction occur concurrently. The non-blocking channel of this invention combines snoop responses from memory controller initiated requests and master initiated evictions/non-coherent writes.
Abstract:
To enable efficient tracking of transactions, an acknowledgement expected signal is used to give the cache coherent interconnect a hint for whether a transaction requires coherent ownership tracking. This signal informs the cache coherent interconnect to expect an ownership transfer acknowledgement signal from the initiating master upon read/write transfer completion. The cache coherent interconnect can therefore continue tracking the transaction at its point of coherency until it receives the acknowledgement from the initiating master only when necessary.
Abstract:
The MSMC (Multicore Shared Memory Controller) described is a module designed to manage traffic between multiple processor cores, other mastering peripherals or DMA, and the EMIF (External Memory InterFace) in a multicore SoC. Each processor has an associated return buffer allowing out of order responses of memory read data and cache snoop responses to ensure maximum bandwidth at the endpoints, and all endpoints receive status messages to simplify the return queue.
Abstract:
The MSMC (Multicore Shared Memory Controller) described is a module designed to manage traffic between multiple processor cores, other mastering peripherals or DMA, and the EMIF (External Memory InterFace) in a multicore SoC. The invention unifies all transaction sizes belonging to a slave previous to arbitrating the transactions in order to reduce the complexity of the arbitration process and to provide optimum bandwidth management among all masters. Two consecutive slots are assigned per cache line access to automatically guarantee the atomicity of all transactions within a single cache line. The need for synchronization among all the banks of a particular SRAM is eliminated, as synchronization is accomplished by assigning back to back slots.
Abstract:
This invention speeds operation for coherence writes to shared memory. This invention immediately commits to the memory endpoint coherence write data. Thus this data will be available earlier than if the memory controller stalled this write pending snoop responses. This invention computes write enable strobes for the coherence write data based upon the cache dirty tags. This invention initiates a snoop cycle based upon the address of the coherence write. The stored write enable strobes enable determination of which data to write to the endpoint memory upon a cached and dirty snoop response.
Abstract:
A coherence maintenance address queue tracks each memory access from receipt until the memory reports the access complete. The address of each new access is compared against the address of all entries in the queue. This check is made when the access is ready to transmit to the memory. If there is no address match, then the current access does not conflict with any pending access. If there is an address match, the current access is stalled. The multi-core shared memory controller would then typically proceed to another access waiting a slot to the endpoint memory. Stored addresses in the coherence maintenance address queue are retired when the endpoint memory reports completion of the operation. At this point the access is no longer a hazard to following operations.
Abstract:
To enable efficient tracking of transactions, an acknowledgement expected signal is used to give the cache coherent interconnect a hint for whether a transaction requires coherent ownership tracking. This signal informs the cache coherent interconnect to expect an ownership transfer acknowledgement signal from the initiating master upon read/write transfer completion. The cache coherent interconnect can therefore continue tracking the transaction at its point of coherency until it receives the acknowledgement from the initiating master only when necessary.