摘要:
A method for forming a through via in a semiconductor element includes providing a semiconductor element having electronic circuitry integrated on the main side thereof. The semiconductor element further includes an etch stop layer and a conductive region, wherein the conductive region is arranged between the etch stop layer and the main side of the semiconductor element. The method also includes selectively etching a through via from a backside of the semiconductor element, opposite to the main side of the semiconductor element, to the etch stop layer and removing at least partly the etch stop layer, so that the conductive region is exposed to the backside and filling at least partly the through via with a conductive material, wherein the conductive material is electrically isolated from the semiconductor element.
摘要:
A method for forming a through via in a semiconductor element includes providing a semiconductor element having electronic circuitry integrated on the main side thereof. The semiconductor element further includes an etch stop layer and a conductive region, wherein the conductive region is arranged between the etch stop layer and the main side of the semiconductor element. The method also includes selectively etching a through via from a backside of the semiconductor element, opposite to the main side of the semiconductor element, to the etch stop layer and removing at least partly the etch stop layer, so that the conductive region is exposed to the backside and filling at least partly the through via with a conductive material, wherein the conductive material is electrically isolated from the semiconductor element.
摘要:
A method and apparatus is described for aligning a first article relative to a second article, for example for aligning a nanoimprint template with a semiconductor wafer. The method comprises the steps of: providing said second article with at least one flexible structure fixed relative thereto at least one point, providing a first article having at least one surface relief marking thereon, providing a detector for measuring an interaction of the flexible structure with the surface relief marking and generating detector signals relating to said interaction, identifying with the help of the detector signals the position of the flexible structure and thus of the second article with respect to the surface relief marking and generating relative movement between the first and second articles to achieve a desired alignment between the first and second articles defined by the surface relief marking. In this method and apparatus the flexible structure is brought into contact with the surface relief marking.
摘要:
A method and apparatus is described for aligning a first article relative to a second article, for example for aligning a nanoimprint template with a semiconductor wafer. The method comprises the steps of: providing said second article with at least one flexible structure fixed relative thereto at least one point, providing a first article having at least one surface relief marking thereon, providing a detector for measuring an interaction of the flexible structure with the surface relief marking and generating detector signals relating to said interaction, identifying with the help of the detector signals the position of the flexible structure and thus of the second article with respect to the surface relief marking and generating relative movement between the first and second articles to achieve a desired alignment between the first and second articles defined by the surface relief marking. In this method and apparatus the flexible structure is brought into contact with the surface relief marking.
摘要:
A microsystem component with a device (3) deformable under the influence of temperature changes is disclosed. The device comprises at least one first (4, 5) and second (8) element with differing thermal expansion coefficients and different thermal conductivities. The elements (4, 5; 8) are physically separate and arranged and connected to each other such that the device (3) assumes flexure states which are dependent on the temperature.
摘要:
A method for silicon micromachining techniques based on high aspect ratio reactive ion etching with gas chopping has been developed capable of producing essentially scallop-free, smooth, sidewall surfaces. The method uses precisely controlled, alternated (or chopped) gas flow of the etching and deposition gas precursors to produce a controllable sidewall passivation capable of high anisotropy. The dynamic control of sidewall passivation is achieved by carefully controlling fluorine radical presence with moderator gasses, such as CH4 and controlling the passivation rate and stoichiometry using a CF2 source. In this manner, sidewall polymer deposition thicknesses are very well controlled, reducing sidewall ripples to very small levels. By combining inductively coupled plasmas with controlled fluorocarbon chemistry, good control of vertical structures with very low sidewall roughness may be produced. Results show silicon features with an aspect ratio of 20:1 for 10 nm features with applicability to nano-applications in the sub-50 nm regime. By comparison, previous traditional gas chopping techniques have produced rippled or scalloped sidewalls in a range of 50 to 100 nm roughness.
摘要:
The invention relates to a device and a method for maskless microlithography. Several microstructured cantilevers (2) are arranged in an array (26) and an actuator is integrated in each of the cantilevers (2) of the array (26). A power supply and control unit (24) is provided, said unit adjusting the distance of the cantilevers (6) relative to a surface (4) that is to be structured by means of an appropriate voltage. Every point of the needles (6) is connected to said power supply and control unit (24). In order to implement the inventive method, an array (26) with cantilevers, each of which carries a point of a needle (6), is brought into contact with a surface (4) to be structured in such a way that the points of the needles (6) are arranged close to the surface (4) to be structured.