Abstract:
According to one embodiment, an electrostatic chuck includes a ceramic dielectric substrate, a base plate, and first and second electrode layers. The ceramic dielectric substrate includes first and second major surfaces. The first and second electrode layers are provided inside the ceramic dielectric substrate. The first electrode layer includes first and second portions. The first portion is positioned more centrally of the ceramic dielectric substrate than is the second portion. The first portion includes first and second surfaces. The second portion includes third and fourth surfaces. A distance between the third surface and the first major surface is constant. A thickness of the second portion between the third and fourth surfaces varies such that the thickness at a circumferential end portion of the second portion which is less than that at a central portion of the second portion.
Abstract:
According to one embodiment, an electrostatic chuck includes a ceramic dielectric substrate, a base plate, and first and second electrode layers. The ceramic dielectric substrate includes first and second major surfaces. The first and second electrode layers are provided inside the ceramic dielectric substrate. The first electrode layer includes first and second portions. The first portion is positioned more centrally of the ceramic dielectric substrate than is the second portion. The first portion includes first and second surfaces. The second portion includes third and fourth surfaces. A distance between the fourth surface and the first major surface is constant. A thickness of the second portion between the third and fourth surfaces varies such that the thickness at a circumferential end portion of the second portion which is less than that at a central portion of the second portion.
Abstract:
According to the embodiment, the electrostatic chuck includes a ceramic dielectric substrate having a first major surface and a second major surface on an opposite side to the first major surface, a base plate supporting the ceramic dielectric substrate and including a gas introduction path, and a first porous part provided at a position between the base plate and the first major surface and being opposite to the gas introduction path. The ceramic dielectric substrate includes a first hole part positioned between the first major surface and the first porous part. At least one of the ceramic dielectric substrate or the first porous part includes a second hole part positioned between the first hole part and the first porous part, and a dimension of the second hole part is smaller than a dimension of the first porous part and larger than a dimension of the first hole part.
Abstract:
On the other hand, the possibility of estimating the dopant ratio of a metal element to each ceria crystalline particle using integral-width or half-width obtained by XRD was considered as follows: an XRD peak is shifted depending on the dopant ratio of La to ceria; when La increases, an XRD peak is shifted to a lower angle; in XRD performed on a raw material obtained by mixing ceria crystalline particles having different dopant ratio, peaks corresponding to the respective dopant ratio exist close to each other; as a result, a peak width is widened; accordingly, the dopant ratio of a metal element to each ceria crystalline particles are supposed to vary when integral-width and half-width obtained by XRD are large. Thus, it was revealed for the first time that integral-width and half-width obtained by XRD indicate variations in dopant ratio. It should be noted that from the direct proportional relationship between the dopant ratio x and the integral-width for dopant ratio ranging from 0.35 to 0.45, integral-widths obtained by XRD are derived to be 0.10 to 0.30 for dopant ratio ranging from 0.35 to 0.45, and half-widths are derived to be 0.10 to 0.30 similarly.
Abstract:
An object of the present invention is to provide a fuel cell preventing formation of a diffusion layer containing Ca and other elements, and having an excellent power generation performance at low temperature by preventing breakdown of a crystal structure of an electrolyte by firing. Disclosed is a solid oxide fuel cell which includes an inner electrode, a solid electrolyte, and an outer electrode, each sequentially laminated on the surface of a porous support. The porous support contains forsterite, and has a Ca element content of 0.2 mass % or less in terms of CaO in a surface region at the inner electrode side.
Abstract:
According to one embodiment, an electrostatic chuck includes a ceramic dielectric substrate, a base plate, and a first electrode layer. The ceramic dielectric substrate has first and second major surfaces. The first electrode layer is provided inside the ceramic dielectric substrate. The first electrode layer is connected to a high frequency power supply. The first electrode layer has a first surface at the first major surface side and a second surface at a side opposite to the first surface. The first electrode layer includes a first portion including the first surface. The first electrode layer includes a ceramic component and a metal component. A concentration of the metal component in the first portion is higher than an average concentration of the metal component in the first electrode layer.
Abstract:
According to the embodiment, an electrostatic chuck includes a ceramic dielectric substrate having a first major surface placing a suction object, a second major surface on an opposite side to the first major surface, a base plate supporting the ceramic dielectric substrate and including a gas introduction path, and a first porous part provided at a position between the base plate and the first major surface of the ceramic dielectric substrate and being opposite to the gas introduction path. The first porous part includes a first region positioned on the ceramic dielectric substrate side. The ceramic dielectric substrate includes a first substrate region positioned on the first region side. The first region and the first substrate region are provided in contact with each other, and an average particle diameter in the first region is different from an average particle diameter in the first substrate region.
Abstract:
A solid oxide fuel cell stack includes a support, a plurality of power generation elements provided on a surface of the support, the plurality of power generation elements connected in series, each including at least a fuel electrode, a solid electrolyte, and an air electrode stacked in that order, and an interconnector that electrically connects an air electrode in one of adjacent power generation elements to a fuel electrode in the other power generation element. A solid electrolyte in adjacent one power generation element is provided between a fuel electrode in the adjacent one power generation element and the fuel electrode in the adjacent other power generation element, and an insulating member is provided at a position that is on the solid electrolyte in the adjacent one power generation element and between the air electrode in the adjacent one power generation element and the solid electrolyte therein.
Abstract:
Disclosed is a solid oxide fuel cell which includes an inner electrode, a solid electrolyte, and an outer electrode, each being sequentially laminated on the surface of a porous support. The porous support contains forsterite, and further has a strontium element concentration of 0.02 mass % to 1 mass % both inclusive in terms of SrO based on the mass of the forsterite.
Abstract:
An object of the present invention is to provide a fuel cell preventing formation of a diffusion layer containing Ca and other elements, and having an excellent power generation performance at low temperature by preventing breakdown of a crystal structure of an electrolyte by firing. Disclosed is a solid oxide fuel cell which includes a fuel electrode, a solid electrolyte, and an air electrode, each being sequentially laminated on the surface of a porous support. The porous support contains forsterite, and further has a calcium element (Ca) content of more than 0.2 mass % but not more than 2 mass % in terms of CaO.