摘要:
A method is disclosed for making a titanium-based compound film of a poly-silicon solar cell. In the method, a ceramic substrate is made of aluminum oxide. The ceramic substrate is coated with a titanium film in an e-gun evaporation system. Dichlorosilane is provided on the titanium film by atmospheric pressure chemical vapor deposition. A titanium-based compound film is formed on the ceramic substrate.
摘要:
The present invention provides a solar cell that absorbs a light source within a spectrum range from ultraviolet to far infrared with two surfaces by an absorption layer made of a semiconductor.
摘要:
A method is disclosed for making a titanium-based compound film of a poly-silicon solar cell. In the method, a ceramic substrate is made of aluminum oxide. The ceramic substrate is coated with a titanium film in an e-gun evaporation system. Dichlorosilane is provided on the titanium film by atmospheric pressure chemical vapor deposition. A titanium-based compound film is formed on the ceramic substrate.
摘要:
A silicon quantum dot fluorescent lamp is made via providing a high voltage source between a cathode assembly and an anode assembly. The cathode assembly is made by providing a first substrate, coating a buffer layer on the first substrate, coating a catalytic layer on the buffer layer and providing a plurality of nanometer discharging elements on the catalytic layer. The anode assembly is made via providing a second substrate, coating a silicon quantum dot fluorescent film on the second substrate with and coating a metal film on the silicon quantum dot fluorescent film.
摘要:
A method is disclosed to make a multi-crystalline silicon film of a solar cell. The method includes the step of providing a ceramic substrate, the step of providing a titanium-based film on the ceramic substrate, the step of providing a p+-type back surface field layer on the titanium-based film, the step of providing a p−-type light-soaking layer on the p+-type back surface field layer and the step of conducting n+-type diffusive deposition of phosphine on the p−-type light-soaking layer based on atmospheric pressure chemical vapor deposition, thus forming an n+-type emitter on the p−-type light-soaking layer.
摘要:
Dichlorosilane and diborane are deposited on the titanium-based alloy film to grow a p+ type back surface field film. The temperature is raised to grow a p− type light-soaking film on the p+ type back surface field film. Phosphine is deposited on the p− type light-soaking film to form an n+ type emitter. Thus, an n+-p−-p+ laminate is provided on the titanium-based alloy film. SiCNO:Ar plasma is used to passivate the n+-p−-p+ laminate, thus forming an anti-reflection film of SiCN/SiO2 on the n+ type emitter. The n+-p−-p+ laminate is etched in a patterned mask process. A p− type ohmic contact is formed on the titanium-based alloy film. The anti-reflection film is etched in a patterned mask process. The n+ type emitter is coated with a titanium/palladium/silver alloy film that is annealed in hydrogen. An n− type ohmic contact is formed on the n+ type emitter.
摘要:
A method is disclosed for making a multi-crystalline silicon film of a solar cell. In the method, a titanium-based film is coated on a ceramic substrate. A back surface field layer is coated on the titanium-based film via providing dichlorosilane and diborane in an atmospheric pressure chemical vapor deposition process at a first temperature. A light-soaking layer is coated on the back surface field layer via providing more dichlorosilane and diborane in the atmospheric pressure chemical vapor deposition process at a second temperature higher than the first temperature.
摘要:
In a method for making a pulsed high-voltage silicon quantum dot fluorescent lamp, an excitation source is made by providing a first substrate, coating the first substrate with a buffer layer of titanium, coating the buffer layer with a catalytic layer of a material selected from a group consisting of nickel, aluminum and platinum and providing a plurality of nanometer discharging elements one the catalytic layer. An emission source is made by providing a second substrate, coating the second substrate with a transparent electrode film of titanium nitride and coating the transparent electrode film with a silicon quantum dot fluorescent film comprising silicon quantum dots. A pulsed high-voltage source is provided between the excitation source and the emission source to generate a pulsed field-effect electric field to cause the nanometer discharging elements to release electrons and accelerate the electrons to excite the silicon quantum dots to emit pulsed visible light.
摘要:
An in-situ gettering method for removing impurities from the surface and interior of a upgraded metallurgical grade silicon wafer is continuously conducted in a reaction chamber. Chloride gas is mixed with carrier gas. The gaseous mixture is used to clean the surface of the silicon wafer. Then, the gaseous mixture is used to form a porous structure on the surface of the silicon wafer before hot annealing is executed. Finally, the gaseous mixture is used to execute hot etching on the surface of the silicon wafer and remove the porous structure from the surface of the silicon wafer. As the chloride gas is used to clean the surface of the silicon wafer and form the porous structure on the surface of the silicon wafer, external gettering is improved. Moreover, interstitial-type metal impurities are effectively removed from the interior of the silicon wafer.
摘要:
An in-situ gettering method for removing impurities from the surface and interior of a upgraded metallurgical grade silicon wafer is continuously conducted in a reaction chamber. Chloride gas is mixed with carrier gas. The gaseous mixture is used to clean the surface of the silicon wafer. Then, the gaseous mixture is used to form a porous structure on the surface of the silicon wafer before hot annealing is executed. Finally, the gaseous mixture is used to execute hot etching on the surface of the silicon wafer and remove the porous structure from the surface of the silicon wafer. As the chloride gas is used to clean the surface of the silicon wafer and form the porous structure on the surface of the silicon wafer, external gettering is improved. Moreover, interstitial-type metal impurities are effectively removed from the interior of the silicon wafer.