Abstract:
The present invention provides an ESD protection circuit electrically connected between a high voltage power line and a low voltage power line, and the ESD protection circuit includes a bipolar junction transistor (BJT) and a trigger source. A collector of the BJT is electrically connected to the high voltage power line, and an emitter and a base of the BJT are electrically connected to the low voltage power line. The trigger source is electrically connected between the base of the BJT and the high voltage power line.
Abstract:
A semiconductor device includes a substrate, a gate positioned on the substrate, a drain region and a source region formed at respective two sides of the gate in the substrate, at least a first doped region formed in the drain region, and at least a first well having the first doped region formed therein. The source region and the drain region include a first conductivity type, the first doped region and the first well include a second conductivity type, and the first conductivity type and the second conductivity type are complementary to each other.
Abstract:
An electrostatic discharge protection structure comprises an isolation layer, a high voltage P-well, an N-well, a P-well, a first doped region of N-type conductivity, a second doped region of P-type conductivity, a third doped region of N-type conductivity, a fourth doped region of P-type conductivity, an anode, and a cathode. The isolation layer is disposed on a substrate. The high voltage P-well is disposed on the isolation layer. The N-well is disposed in the high voltage P-well. The P-well is disposed in the high voltage P-well, and the P-well is separated from the N-well. The first and the second doped regions are disposed in the N-well. The third and the fourth doped regions are disposed in the P-well. The anode is electrically connected to the first doped region and the second doped region, and the cathode is electrically connected to the fourth doped region.
Abstract:
A semiconductor device includes a substrate, a gate positioned on the substrate, a drain region and a source region formed at respective two sides of the gate in the substrate, at least a first doped region formed in the drain region, and at least a first well having the first doped region formed therein. The source region and the drain region include a first conductivity type, the first doped region and the first well include a second conductivity type, and the first conductivity type and the second conductivity type are complementary to each other.
Abstract:
An electrostatic discharge protection structure comprises an isolation layer, a high voltage P-well, an N-well, a P-well, a first doped region of N-type conductivity, a second doped region of P-type conductivity, a third doped region of N-type conductivity, a fourth doped region of P-type conductivity, an anode, and a cathode. The isolation layer is disposed on a substrate. The high voltage P-well is disposed on the isolation layer. The N-well is disposed in the high voltage P-well. The P-well is disposed in the high voltage P-well, and the P-well is separated from the N-well. The first and the second doped regions are disposed in the N-well. The third and the fourth doped regions are disposed in the P-well. The anode is electrically connected to the first doped region and the second doped region, and the cathode is electrically connected to the fourth doped region.
Abstract:
An electrostatic discharge (ESD) protection device is disclosed. The ESD protection device comprises a trigger circuit, a switch, and an output buffer. When an ESD event occurs, the trigger circuit turns on the switch. One part of the current of the electrostatic discharge (ESD) event may be routed to a ground through the switch from the output buffer coupled to the output pad.
Abstract:
An electrostatic discharge (ESD) protection device is disclosed. The ESD protection device comprises a trigger circuit, a switch, and an output buffer. When an ESD event occurs, the trigger circuit turns on the switch. One part of the current of the electrostatic discharge (ESD) event may be routed to a ground through the switch from the output buffer coupled to the output pad.
Abstract:
An electrostatic discharge protection structure includes a first well, a second well disposed in the first well, a first and a second doped region disposed in the first well, a third and a fourth doped region disposed in the second well, a first electrode electrically connected to the first doped region and the second doped region, and a second electrode electrically connected to the fourth doped region.
Abstract:
An electrostatic discharge protection structure includes a first well, a second well disposed in the first well, a first and a second doped region disposed in the first well, a third and a fourth doped region disposed in the second well, a first electrode electrically connected to the first doped region and the second doped region, and a second electrode electrically connected to the fourth doped region.
Abstract:
A semiconductor device includes a substrate, a gate positioned on the substrate, a drain and a source formed in the substrate at respective two sides of the gate, and a doped region formed in the source. The drain and the source comprise a first conductivity type and the doped region comprises a second conductivity type. The first conductivity type and the second conductivity type are complementary to each other.