Abstract:
Systems and methods of producing medical images of a subject are disclosed herein. In one embodiment, structural data and vascular data are acquired from a region of interest in the subject. A filter is generated using structural image data acquired from a second layer and blood flow image data received from a first layer in the region of interest. The filter is applied to vascular image data acquired from a second, deeper layer in the region of interest to form an image of the second layer having reduced tailing artifacts relative to the unfiltered vascular image data.
Abstract:
The present technology relates generally to systems and methods for in vivo visualization of lymphatic vessels. A system includes an optical coherence tomography (OCT) device and a computing device coupled to the OCT device configured to cause the OCT device to perform an OCT scan, generate image data in response to the OCT scan, and apply an eigendecomposition filter to the image data to produce processed image data. Alternatively or in addition, the computing device can compensate for scattering attenuation along an optical axis of the OCT scan in the image data set to generate compensated image data, enhance contrast of the compensated image data along a cross-section substantially orthogonal to the optical axis to generate contrast-enhanced image data, and identify at least one lymphatic vessel in the image data.
Abstract:
A method for imaging blood flow through target tissue is disclosed. An example method may include (a) directing a light beam at a blood-perfused target tissue, (b) reflecting the directed light beam off of static target tissue and flowing cells, (c) capturing a plurality of digital images of interference patterns of the reflected light in a plurality of successive frames, (d) measuring a light intensity of at least one pixel of each digital image, where the at least one pixel corresponds to an identical pair of coordinates in each successive frame, (e) comparing the measured light intensity of the at least one pixel of each digital image to the measured light intensity of the at least one pixel of an adjacent frame at the identical pair of coordinates and (f) determining a compiled light intensity for the at least one pixel for an aggregate motion contrast.
Abstract:
Methods and systems for measuring one or more properties of a soft material employ air transmitted ultrasound that is reflected from the soft material to generate a mechanical wave in the soft material. A method of measuring one or more properties of a soft material includes transmitting ultrasound through air to an interface boundary between the soft material and air. Force is applied to the soft material by reflecting the ultrasound from the soft material. A mechanical wave is generated in the soft material as a result of the force applied to the soft material. Propagation of the mechanical wave in the soft material is measured with an imaging system. One or more properties of the soft material is determined based on the measured propagation of the mechanical wave in the soft material.
Abstract:
Handheld optical imaging devices and methods are disclosed herein. In an embodiment, an optical coherence tomography (OCT) system includes an OCT probe that is configured as a hand-held probe for imaging an eye of a patient, the OCT probe includes: an OCT optical system configured to direct a source OCT signal to the eye and configured to capture OCT scan signal returning from the eye; and an on-probe display carried by a handle, wherein the on-probe display is configured to display imaging data of the eye of a patient to an operator during OCT imaging.
Abstract:
Methods and systems for measuring one or more properties of a soft material employ air transmitted ultrasound that is reflected from the soft material to generate a mechanical wave in the soft material. A method of measuring one or more properties of a soft material includes transmitting ultrasound through air to an interface boundary between the soft material and air. Force is applied to the soft material by reflecting the ultrasound from the soft material. A mechanical wave is generated in the soft material as a result of the force applied to the soft material. Propagation of the mechanical wave in the soft material is measured with an imaging system. One or more properties of the soft material is determined based on the measured propagation of the mechanical wave in the soft material.
Abstract:
A five-index quantitative analysis of OCT angiograms is disclosed. One method of analyzing an anatomical region of interest of a subject includes acquiring vascular image data from the region of interest and generating a binary vasculature map from the vascular image data. A vessel skeleton map and vessel perimeter map are generated from the binary vasculature map. Based on the three generated maps, a vessel area density, vessel skeleton density, vessel perimeter index, vessel diameter index, and vessel complexity can be determined, in addition to detection of any flow impairment zones in the region of interest. These metrics can be used to detect and assess vascular abnormalities from multiple perspectives.
Abstract:
Systems and methods for determining microvascular functions in a sample of a subject are provided. A system obtains one or more spectral interference signals from the sample during one or more scans, extracts data from the spectral interference signals concerning cell, tissue, or particle motion within the sample via one or more optical microangiography algorithms, and calculates volumetric properties from the data indicative of fluid motion within the sample. The system and method may be used for diagnosing, providing a prognosis, or monitoring treatment of a disorder of the sample.