Abstract:
Techniques for using a host-side cache to accelerate virtual machine (VM) I/O are provided. In one embodiment, the hypervisor of a host system can intercept an I/O request from a VM running on the host system, where the I/O request is directed to a virtual disk residing on a shared storage device. The hypervisor can then process the I/O request by accessing a host-side cache that resides one or more cache devices distinct from the shared storage device, where the accessing of the host-side cache is transparent to the VM.
Abstract:
Systems and techniques are described for thread cache allocation. A described technique includes monitoring input and output accesses for a plurality of threads executing on a computing device that includes a cache comprising a quantity of memory blocks, determining a respective reuse intensity for each of the threads, determining a respective read ratio for each of the threads, determining a respective quantity of memory blocks for each of the partitions by optimizing a combination of cache utilities, each cache utility being based on the respective reuse intensity, the respective read ratio, and a respective hit ratio for a particular partition, and resizing one or more of the partitions to be equal to the respective quantity of the memory blocks for the partition.
Abstract:
Techniques for utilizing flash storage as an extension of hard disk (HDD) based storage are provided. In one embodiment, a computer system can store a first subset of blocks of a logical file in a first physical file residing on a flash storage tier, and a second subset of blocks of the logical file in a second physical file residing on an HDD storage tier. The computer system can then receive an I/O request directed to one or more blocks of the logical file and process the I/O request by accessing the flash storage tier or the HDD storage tier, the accessing being based on whether the one or more blocks are part of the first subset of blocks stored in the first physical file.
Abstract:
Techniques for dynamically managing the placement of blocks of a logical file between a flash storage tier and an HDD storage tier are provided. In one embodiment, a computer system can collect I/O statistics pertaining to the logical file, where a first subset of blocks of the logical file are stored on the flash storage tier and where a second subset of blocks of the logical file are stored on the HDD storage tier. The computer system can further generate a heat map for the logical file based on the I/O statistics, where the heat map indicates, for each block of the logical file, the number of times the block has been accessed. The computer system can then identify, using the heat map, one or more blocks of the logical file as being performance-critical blocks, and can move data between the flash and HDD storage tiers such that the performance-critical blocks are placed on the flash storage tier.
Abstract:
Techniques for utilizing flash storage as an extension of hard disk (HDD) storage are provided. In one embodiment, a computer system stores a subset of blocks of a logical file in a first physical file, associated with a first data structure that represents a filesystem object, on flash storage and a subset of blocks, associated with a second data structure that represents a filesystem object comprising tiering configuration information that includes an identifier of the first physical file, in a second physical file on HDD storage. The computer system processes an I/O request directed to the logical file by directing it to either the physical file on the flash storage or the HDD storage by verifying that the tiering configuration information exists in the data structure and determining whether the one or more blocks are part of the first subset of blocks or the second subset of blocks.
Abstract:
Techniques for using a cache to accelerate virtual machine (VM) I/O are provided. In one embodiment, a host system can intercept an I/O request from a VM running on the host system, where the I/O request is directed to a virtual disk residing on a shared storage device. The host system can then process the I/O request by accessing a cache that resides on one or more cache devices directly attached to the host system, where the accessing of the cache is transparent to the VM.
Abstract:
Techniques for using a cache to accelerate virtual machine (VM) I/O are provided. In one embodiment, a host system can intercept an I/O request from a VM running on the host system, where the I/O request is directed to a virtual disk residing on a shared storage device. The host system can then process the I/O request by accessing a cache that resides on one or more cache devices directly attached to the host system, where the accessing of the cache is transparent to the VM.
Abstract:
Techniques for surfacing host-side flash storage capacity to a plurality of VMs running on a host system are provided. In one embodiment, the host system creates, for each VM in the plurality of VMs, a flash storage space allocation in a flash storage device that is locally attached to the host system. The host system then causes the flash storage space allocation to be readable and writable by the VM as a virtual flash memory device.
Abstract:
Techniques for using a cache to accelerate virtual machine (VM) I/O are provided. In one embodiment, a host system can intercept an I/O request from a VM running on the host system, where the I/O request is directed to a virtual disk residing on a shared storage device. The host system can then process the I/O request by accessing a cache that resides on one or more cache devices directly attached to the host system, where the accessing of the cache is transparent to the VM.
Abstract:
Techniques for surfacing host-side flash storage capacity to a plurality of VMs running on a host system are provided. In one embodiment, the host system creates, for each VM in the plurality of VMs, a flash storage space allocation in a flash storage device that is locally attached to the host system. The host system then causes the flash storage space allocation to be readable and writable by the VM as a virtual flash memory device.