Abstract:
Techniques for surfacing host-side flash storage capacity to a plurality of VMs running on a host system are provided. In one embodiment, the host system creates, for each VM in the plurality of VMs, a flash storage space allocation in a flash storage device that is locally attached to the host system. The host system then causes the flash storage space allocation to be readable and writable by the VM as a virtual flash memory device.
Abstract:
Techniques for using a cache to accelerate virtual machine (VM) I/O are provided. In one embodiment, a host system can intercept an I/O request from a VM running on the host system, where the I/O request is directed to a virtual disk residing on a shared storage device. The host system can then process the I/O request by accessing a cache that resides on one or more cache devices directly attached to the host system, where the accessing of the cache is transparent to the VM.
Abstract:
Techniques for surfacing host-side flash storage capacity to a plurality of VMs running on a host system are provided. In one embodiment, the host system creates, for each VM in the plurality of VMs, a flash storage space allocation in a flash storage device that is locally attached to the host system. The host system then causes the flash storage space allocation to be readable and writable by the VM as a virtual flash memory device.
Abstract:
Techniques for surfacing host-side flash storage capacity to a plurality of VMs running on a host system are provided. In one embodiment, the host system creates, for each VM in the plurality of VMs, a flash storage space allocation in a flash storage device that is locally attached to the host system. The host system then causes the flash storage space allocation to be readable and writable by the VM as a virtual flash memory device.
Abstract:
An I/O hint framework is provided. In one embodiment, a computer system can receive an I/O command originating from a virtual machine (VM), where the I/O command identifies a data block of a virtual disk. The computer system can further extract hint metadata from the I/O command, where the hint metadata includes one or more characteristics of the data block that are relevant for determining how to cache the data block in a flash storage-based cache. The computer system can then make the hint metadata available to a caching module configured to manage the flash storage-based cache.
Abstract:
Techniques for using a host-side cache to accelerate virtual machine (VM) I/O are provided. In one embodiment, the hypervisor of a host system can intercept an I/O request from a VM running on the host system, where the I/O request is directed to a virtual disk residing on a shared storage device. The hypervisor can then process the I/O request by accessing a host-side cache that resides one or more cache devices distinct from the shared storage device, where the accessing of the host-side cache is transparent to the VM.
Abstract:
A cache is maintained with write order numbers that indicate orders of writes into the cache, so that periodic partial flushes of the cache can be executed while maintaining write order consistency. A method of storing data into the cache includes receiving a request to write data into the cache, identifying lines in the cache for storing the data, writing the data into the lines of the cache, storing a write order number, and associating the write order number with the lines of the cache. A method of flushing a cache having cache lines associated with write order numbers includes the steps of identifying lines in the cache that are associated with either a selected write order number or a write order number that is less than the selected write order number, and flushing data stored in the identified lines to a persistent storage.
Abstract:
Techniques for using a cache to accelerate virtual machine (VM) I/O are provided. In one embodiment, a host system can intercept an I/O request from a VM running on the host system, where the I/O request is directed to a virtual disk residing on a shared storage device. The host system can then process the I/O request by accessing a cache that resides on one or more cache devices directly attached to the host system, where the accessing of the cache is transparent to the VM.
Abstract:
Techniques for using a cache to accelerate virtual machine (VM) I/O are provided. In one embodiment, a host system can intercept an I/O request from a VM running on the host system, where the I/O request is directed to a virtual disk residing on a shared storage device. The host system can then process the I/O request by accessing a cache that resides on one or more cache devices directly attached to the host system, where the accessing of the cache is transparent to the VM.
Abstract:
An I/O hint framework is provided. In one embodiment, a computer system can receive an I/O command originating from a virtual machine (VM), where the I/O command identifies a data block of a virtual disk. The computer system can further extract hint metadata from the I/O command, where the hint metadata includes one or more characteristics of the data block that are relevant for determining how to cache the data block in a flash storage-based cache. The computer system can then make the hint metadata available to a caching module configured to manage the flash storage-based cache.