Abstract:
In order to facilitate efficient and scalable lookup of current hop limits of transmitted packets, a communications device embeds hop limit values along with other connection parameters in a connection data structure. To transmit a packet for a particular connection, the communications device retrieves the data structure for the particular connection and applies the hop limit value embedded in the data structure to the packet for transmission. To keep track of the hop limits being embedded in different data structures of different connections, the communications device use a binary search in which each node of the search tree correspond to a different connection. The communications device maintains one such search tree per communications interface.
Abstract:
In order to facilitate efficient and scalable lookup of current hop limits of transmitted packets, a communications device embeds hop limit values along with other connection parameters in a connection data structure. To transmit a packet for a particular connection, the communications device retrieves the data structure for the particular connection and applies the hop limit value embedded in the data structure to the packet for transmission. To keep track of the hop limits being embedded in different data structures of different connections, the communications device use a binary search in which each node of the search tree correspond to a different connection. The communications device maintains one such search tree per communications interface.
Abstract:
Some embodiments provide a queue management system that efficiently and dynamically manages multiple queues that process traffic to and from multiple virtual machines (VMs) executing on a host. This system manages the queues by (1) breaking up the queues into different priority pools with the higher priority pools reserved for particular types of traffic or VM (e.g., traffic for VMs that need low latency), (2) dynamically adjusting the number of queues in each pool (i.e., dynamically adjusting the size of the pools), (3) dynamically reassigning a VM to a new queue based on one or more optimization criteria (e.g., criteria relating to the underutilization or overutilization of the queue).
Abstract:
A host computer has one or more physical central processing units (CPUs) that support the execution of a plurality of containers, where the containers each include one or more processes. Each process of a container is assigned to execute exclusively on a corresponding physical CPU when the corresponding container is determined to be latency sensitive. The assignment of a process to execute exclusively on a corresponding physical CPU includes the migration of tasks from the corresponding physical CPU to one or more other physical CPUs of the host system, and the directing of task and interrupt processing to the one or more other physical CPUs. Tasks of the process corresponding to the container are then executed on the corresponding physical CPU.
Abstract:
A host computer has one or more physical central processing units (CPUs) that support the execution of a plurality of containers, where the containers each include one or more processes. Each process of a container is assigned to execute exclusively on a corresponding physical CPU when the corresponding container is determined to be latency sensitive. The assignment of a process to execute exclusively on a corresponding physical CPU includes the migration of tasks from the corresponding physical CPU to one or more other physical CPUs of the host system, and the directing of task and interrupt processing to the one or more other physical CPUs. Tasks of the process corresponding to the container are then executed on the corresponding physical CPU.
Abstract:
A method of optimizing network processing in a system comprising a physical host and a set of physical network interface controllers (PNICs) is provided. The physical host includes a forwarding element. The method includes determining that a set of conditions is satisfied to bypass the forwarding element for exchanging packets between a particular data compute node (DCN) and a particular PNIC. The set of conditions includes the particular DCN being the only DCN connected to the forwarding element and the particular PNIC being the only PNIC connected to the forwarding element. The method exchanges packets between the particular DCN and the particular PNIC bypassing the forwarding element. The method determines that at least one condition in said set of conditions is not satisfied. The method utilizes the forwarding element to exchange packets between the particular DCN and the particular PNIC.
Abstract:
A method of optimizing network processing in a system comprising a physical host and a set of physical network interface controllers (PNICs) is provided. The physical host includes a forwarding element. The method includes determining that a set of conditions is satisfied to bypass the forwarding element for exchanging packets between a particular data compute node (DCN) and a particular PNIC. The set of conditions includes the particular DCN being the only DCN connected to the forwarding element and the particular PNIC being the only PNIC connected to the forwarding element. The method exchanges packets between the particular DCN and the particular PNIC bypassing the forwarding element. The method determines that at least one condition in said set of conditions is not satisfied. The method utilizes the forwarding element to exchange packets between the particular DCN and the particular PNIC.
Abstract:
A host computer has a plurality of containers including a first container executing therein, where the host also includes a physical network interface controller (NIC). A packet handling interrupt is detected upon receipt of a first data packet associated with the first container. If the first virtual machine is latency sensitive, then the packet handling interrupt is processed. If the first virtual machine is not latency sensitive, then the first data packet is queued and and processing of the packet handling interrupt is delayed.
Abstract:
A method of optimizing network processing in a system comprising a physical host and a set of physical network interface controllers (PNICs) is provided. The physical host includes a forwarding element. The method includes determining that a set of conditions is satisfied to bypass the forwarding element for exchanging packets between a particular data compute node (DCN) and a particular PNIC. The set of conditions includes the particular DCN being the only DCN connected to the forwarding element and the particular PNIC being the only PNIC connected to the forwarding element. The method exchanges packets between the particular DCN and the particular PNIC bypassing the forwarding element. The method determines that at least one condition in said set of conditions is not satisfied. The method utilizes the forwarding element to exchange packets between the particular DCN and the particular PNIC.
Abstract:
In order to facilitate efficient and scalable lookup of current hop limits of transmitted packets, a communications device embeds hop limit values along with other connection parameters in a connection data structure. To transmit a packet for a particular connection, the communications device retrieves the data structure for the particular connection and applies the hop limit value embedded in the data structure to the packet for transmission. To keep track of the hop limits being embedded in different data structures of different connections, the communications device use a binary search in which each node of the search tree correspond to a different connection. The communications device maintains one such search tree per communications interface.