Abstract:
Systems and methods for the delivery of linear accelerator radiotherapy in conjunction with magnetic resonance imaging in which components of a linear accelerator may be placed in shielding containers around a gantry, may be connected with RF waveguides, and may employ various systems and methods for magnetic and radio frequency shielding.
Abstract:
Disclosed herein are methods including calibrating a radiotherapy machine to identify an effective radiation source size of a radiation source contained within the radiotherapy machine, the radiation source having a nominal radiation source size, to improve accuracy of a predicted dose profile for one or more radiation beams from the radiation source to further improve accuracy of radiation dose calculation and treatment delivery.
Abstract:
Systems and methods for correcting saturation banding artifacts in magnetic resonance imaging in which artifact and reference calibration scans are used to create one dimensional or two dimensional correction profiles, which are subsequently applied to actual diagnostic imaging scans to correct the saturation banding artifacts.
Abstract:
Systems and methods for the delivery of linear accelerator radiotherapy in conjunction with magnetic resonance imaging in which components of a linear accelerator may be placed in shielding containers around a gantry, may be connected with RF waveguides, and may employ various systems and methods for magnetic and radio frequency shielding.
Abstract:
A radiation therapy system comprises a magnetic resonance imaging (MRI) system combined with an irradiation system, which can include one or more linear accelerators (linacs) that can emit respective radiation beams suitable for radiation therapy. The MRI system includes a split magnet system, comprising first and second main magnets separated by gap. A gantry is positioned in the gap between the main MRI magnets and supports the linac(s) of the irradiation system. The gantry is rotatable independently of the MRI system and can angularly reposition the linac(s). Shielding can also be provided in the form of magnetic and/or RF shielding. Magnetic shielding can be provided for shielding the linac(s) from the magnetic field generated by the MRI magnets. RF shielding can be provided for shielding the MRI system from RF radiation from the linac.
Abstract:
Magnetic resonance (MR) guided radiation therapy (MRgRT) enables control over the delivery of radiation based on patient motion indicated by MR imaging (MRI) images captured during radiation delivery. A method for MRgRT includes: simultaneously using one or more radiation therapy heads to deliver radiation and an MRI system to perform MRI; using a processor to determine whether one or more gates are triggered based on at least a portion of MRI images captured during the delivery of radiation; and in response to determining that one or more gates are triggered based on at least a portion of the MRI images captured during the delivery of radiation, suspending the delivery of radiation.
Abstract:
A radiofrequency receive coil assembly can include a first conductive loop and a second conductive loop electrically connected at a node. The first and second conductive loops can extend into a treatment beam region of the radio frequency receive coil assembly through which one or more beams of ionizing radiation pass. The first conductive loop and the second conductive loop can overlap each other to provide electromagnetic isolation and/or can use a common conductor combined with a shared capacitor to provide electromagnetic isolation, with the shared capacitor or other electrical components, as well as any conductive loop overlaps, being positioned outside of the treatment beam region. These features can, among other possible advantages, minimize and homogenize attenuation of the beams of ionizing radiation by the radiofrequency receive coil assembly.
Abstract:
Active resistive shim coil assemblies may be used in magnetic resonance imaging (MRI) systems to reduce in-homogeneity of the magnetic field in the imaging volume. Disclosed embodiments may be used with continuous systems, gapped cylindrical systems, or vertically gapped systems. Disclosed embodiments may also be used with an open MRI system and can be used with an instrument placed in the gap of the MRI system. An exemplary embodiment of the active resistive shim coil assembly of the present disclosure includes active resistive shim coils each operable to be energized by separate currents through a plurality of power channels. In some embodiments, the disclosed active resistive shim coil assemblies allow for various degrees of freedom to shim out field in-homogeneity.
Abstract:
A surgical guidance system is disclosed that allows for real-time imaging and patient monitoring during a surgical procedure. The system can include an MRI system for generating real-time images of the patient while surgery is being performed. Prior to surgery, a surgical plan can be created using a planning interface. A control unit receives the real-time image data and the surgical plan, and monitors the image data based on parameters included in the surgical plan. The control-unit monitoring occurs in real-time while the surgical procedure is being performed. The control unit can detect deviations from the surgical plan and/or high-risk patient conditions and instruct an alert unit to issue an alert based on the detected conditions.
Abstract:
Edema in tissue of a patient undergoing a course of radiation therapy or treatment can be estimated based on one or more MRI measurements used to measure changes in fluid content of various tissues. A correlation between observed changes in edema and one or more delivered fractions of radiation can be used to drive one or more clinical actions. Methods, systems, articles of manufacture, and the like are described.