Abstract:
A chromatography system includes a gradient delay volume defined as an overall fluid volume between where gradient is proportioned until an inlet of a chromatography column, a pump pumping a flow of gradient; and at least one valve located downstream from the pump, the at least one valve having a plurality of ports including an inlet port that receives the flow of gradient from the pump and an outlet port through which the flow of gradient exits the at least one valve, the at least one valve having at least two positions. A first position of the at least two positions of the at least one valve increases the gradient delay volume of the chromatography system relative to when the at least one valve is in a second position.
Abstract:
Described is a mixer for a chromatography system. The mixer includes an inlet manifold channel, an outlet manifold channel and a plurality of transfer channels. The inlet manifold channel has an inlet at a proximal end of the inlet manifold channel for receiving an inlet flow. The transfer channels are fluidly connected between the inlet and outlet manifold channels. The respective fluid connections are distributed along each of the inlet and outlet manifolds channels. The transfer channels have different volumes. The mixer may be formed of a plurality of layer and the layers may be diffusion bonded to each other.
Abstract:
A method for controlling fluid flowing through a chromatographic system includes determining a fluidic parameter related to density at a first fluidic location in the chromatographic system; and in response to the determined fluidic parameter, modifying a volumetric flow rate or a pressure at a second fluidic location in the chromatographic system to produce a selected mass flow rate of the fluid.
Abstract:
Described is a method of transferring a chromatographic method between liquid chromatography (LC) systems and a sample for performing the method. The method is based on a determination of an isoretention temperature at which two solutes co-elute. The method enables separations to be performed using different LC systems with reproducible and equivalent results. For example, the method allows for a chromatography method developed for HPLC to be readily transferred to a UPLC system and for a chromatography method developed for a UPLC system to be more readily transferred to a HPLC system. The method addresses LC systems having column ovens of different design in which the internal column temperatures are not equal although the operating temperatures of the column ovens may be accurately controlled to equal values. The retention behavior and resolution of different LC systems is caused to be substantially the same so that equivalent separation results are obtained.
Abstract:
A method for controlling fluid flowing through a chromatographic system includes determining a fluidic parameter related to density at a first fluidic location in the chromatographic system; and in response to the determined fluidic parameter, modifying a volumetric flow rate or a pressure at a second fluidic location in the chromatographic system to produce a selected mass flow rate of the fluid.
Abstract:
Described is a mixer for a chromatography system. The mixer includes an inlet manifold channel, an outlet manifold channel and a plurality of transfer channels. The inlet manifold channel has an inlet at a proximal end of the inlet manifold channel for receiving an inlet flow. The transfer channels are fluidly connected between the inlet and outlet manifold channels. The respective fluid connections are distributed along each of the inlet and outlet manifolds channels. The transfer channels have different volumes. The mixer may be formed of a plurality of layer and the layers may be diffusion bonded to each other.
Abstract:
A method for injecting a diluted sample in a chromatography system includes merging a flow of a sample and a flow of a diluent to form a flow of a diluted sample. A dilution ratio of the diluted sample equals a sum of the volumetric flow rates of the sample and the diluent divided by the volumetric flow rate of the sample. The diluted sample is stored in a holding element before injection into a chromatographic system flow. Sample dilution occurs under low pressure relative to the chromatographic flow thereby allowing lower pressure sample and diluent syringes to be used. Other benefits include reduced compressibility and a reduction in leaks due to the lower pressure operation. The method avoids problems associated with manual techniques which can introduce errors due, for example, to loss of sample, sample precipitation and adsorption of sample to vials.
Abstract:
Described are a method and apparatus for diluting a chromatographic sample. The method includes repeating an alternating acquisition of sample fluidic plugs each having an incremental volume of sample and diluent fluidic plugs each having an incremental volume of diluent to obtain a stack of alternating sample and diluent fluidic plugs. The stack is inserted into a flow of a mobile phase in a chromatography system. Alternatively, the method includes repeating the steps of injecting an incremental volume of sample into a chromatographic system flow and providing an incremental volume of mobile phase into the chromatographic system flow. In either implementation, the dilution ratio of the sample equals the sum of the incremental volumes of the sample and the diluent or mobile phase divided by the sum of the incremental volumes of the sample.
Abstract:
Described are a method and apparatus for diluting a chromatographic sample. The method includes repeating an alternating acquisition of sample fluidic plugs each having an incremental volume of sample and diluent fluidic plugs each having an incremental volume of diluent to obtain a stack of alternating sample and diluent fluidic plugs. The stack is inserted into a flow of a mobile phase in a chromatography system. Alternatively, the method includes repeating the steps of injecting an incremental volume of sample into a chromatographic system flow and providing an incremental volume of mobile phase into the chromatographic system flow. In either implementation, the dilution ratio of the sample equals the sum of the incremental volumes of the sample and the diluent or mobile phase divided by the sum of the incremental volumes of the sample.
Abstract:
A method for injecting a diluted sample in a chromatography system includes merging a flow of a sample and a flow of a diluent to form a flow of a diluted sample. A dilution ratio of the diluted sample equals a sum of the volumetric flow rates of the sample and the diluent divided by the volumetric flow rate of the sample. The diluted sample is stored in a holding element before injection into a chromatographic system flow. Sample dilution occurs under low pressure relative to the chromatographic flow thereby allowing lower pressure sample and diluent syringes to be used. Other benefits include reduced compressibility and a reduction in leaks due to the lower pressure operation. The method avoids problems associated with manual techniques which can introduce errors due, for example, to loss of sample, sample precipitation and adsorption of sample to vials.