Abstract:
A method for controlling fluid flowing through a chromatographic system includes determining a fluidic parameter related to density at a first fluidic location in the chromatographic system; and in response to the determined fluidic parameter, modifying a volumetric flow rate or a pressure at a second fluidic location in the chromatographic system to produce a selected mass flow rate of the fluid.
Abstract:
Described is a method of transferring a chromatographic method between liquid chromatography (LC) systems and a sample for performing the method. The method is based on a determination of an isoretention temperature at which two solutes co-elute. The method enables separations to be performed using different LC systems with reproducible and equivalent results. For example, the method allows for a chromatography method developed for HPLC to be readily transferred to a UPLC system and for a chromatography method developed for a UPLC system to be more readily transferred to a HPLC system. The method addresses LC systems having column ovens of different design in which the internal column temperatures are not equal although the operating temperatures of the column ovens may be accurately controlled to equal values. The retention behavior and resolution of different LC systems is caused to be substantially the same so that equivalent separation results are obtained.
Abstract:
A method for controlling fluid flowing through a chromatographic system includes determining a fluidic parameter related to density at a first fluidic location in the chromatographic system; and in response to the determined fluidic parameter, modifying a volumetric flow rate or a pressure at a second fluidic location in the chromatographic system to produce a selected mass flow rate of the fluid.
Abstract:
A method for injecting a diluted sample in a chromatography system includes merging a flow of a sample and a flow of a diluent to form a flow of a diluted sample. A dilution ratio of the diluted sample equals a sum of the volumetric flow rates of the sample and the diluent divided by the volumetric flow rate of the sample. The diluted sample is stored in a holding element before injection into a chromatographic system flow. Sample dilution occurs under low pressure relative to the chromatographic flow thereby allowing lower pressure sample and diluent syringes to be used. Other benefits include reduced compressibility and a reduction in leaks due to the lower pressure operation. The method avoids problems associated with manual techniques which can introduce errors due, for example, to loss of sample, sample precipitation and adsorption of sample to vials.
Abstract:
A method for injecting a diluted sample in a chromatography system includes merging a flow of a sample and a flow of a diluent to form a flow of a diluted sample. A dilution ratio of the diluted sample equals a sum of the volumetric flow rates of the sample and the diluent divided by the volumetric flow rate of the sample. The diluted sample is stored in a holding element before injection into a chromatographic system flow. Sample dilution occurs under low pressure relative to the chromatographic flow thereby allowing lower pressure sample and diluent syringes to be used. Other benefits include reduced compressibility and a reduction in leaks due to the lower pressure operation. The method avoids problems associated with manual techniques which can introduce errors due, for example, to loss of sample, sample precipitation and adsorption of sample to vials.