摘要:
A nitride semiconductor device includes a first semiconductor layer, a second semiconductor layer, a conductive substrate, a first electrode, a second electrode, and a control electrode. The second semiconductor layer is directly bonded to the first semiconductor layer. The conductive substrate is provided on and electrically connected to the first semiconductor layer. The first electrode and the second electrode are provided on and electrically connected to a surface of the second semiconductor layer on a side opposite to the first semiconductor layer. The control electrode is provided on the surface of the second semiconductor layer between the first electrode and the second electrode. The first electrode is electrically connected to a drain electrode of a MOSFET formed of Si. The control electrode is electrically connected to a source electrode of the MOSFET. The conductive substrate is electrically connected to a gate electrode of the MOSFET.
摘要:
A nitride semiconductor device includes a substrate, a first Inx1Ga1-x1-y1Aly1N layer, a second Inx2Ga1-x2-y2Aly2N layer, an interlayer insulating film, a source electrode, a drain electrode, a first gate electrode, a Schottky electrode, a second gate electrode, an interconnection layer. The second Inx2Ga1-x2-y2Aly2N layer is provided on a surface of the first Inx1Ga1-x1-y1Aly1N layer. The second Inx2Ga1-x2-y2Aly2N layer has a wider band gap than the first Inx1Ga1-x1-y1Aly1N layer. The first gate electrode is provided between the source electrode and the drain electrode on a surface of the second Inx2Ga1-x2-y2Aly2N layer. The Schottky electrode is provided on the second Inx2Ga1-x2-y2Aly2N layer between the first gate electrode and the drain electrode. The second gate electrode is provided on the second Inx2Ga1-x2-y2Aly2N layer between the Schottky electrode and the drain electrode. The interconnection layer electrically connects the source electrode, the Schottky electrode, and the second gate electrode.
摘要:
A nitride semiconductor device includes a first semiconductor layer, a second semiconductor layer, a conductive substrate, a first electrode, a second electrode, and a control electrode. The second semiconductor layer is directly bonded to the first semiconductor layer. The conductive substrate is provided on and electrically connected to the first semiconductor layer. The first electrode and the second electrode are provided on and electrically connected to a surface of the second semiconductor layer on a side opposite to the first semiconductor layer. The control electrode is provided on the surface of the second semiconductor layer between the first electrode and the second electrode. The first electrode is electrically connected to a drain electrode of a MOSFET formed of Si. The control electrode is electrically connected to a source electrode of the MOSFET. The conductive substrate is electrically connected to a gate electrode of the MOSFET.
摘要:
According to one embodiment, a nitride semiconductor device includes a first, a second and a third semiconductor layer, a first and a second main electrode and a control electrode. The first layer made of a nitride semiconductor of a first conductivity type is provided on a substrate. The second layer made of a nitride semiconductor of a second conductivity type is provided on the first layer. The third layer made of a nitride semiconductor is provided on the second layer. The first electrode is electrically connected with the second layer. The second electrode is provided at a distance from the first electrode and electrically connected with the second layer. The control electrode is provided within a first trench via an insulating film. The first trench is disposed between the first and the second main electrodes, penetrates the third and the second layers, and reaches the first layer.
摘要:
A nitride semiconductor device comprises: a substrate body including a conductive substrate portion and a high resistance portion; a first semiconductor layer of a nitride semiconductor provided on the substrate body; a second semiconductor layer provided on the first semiconductor layer; a first main electrode provided on the second semiconductor layer; a second main electrode provided on the second semiconductor layer; and a control electrode provided on the second semiconductor layer between the first main electrode and the second main electrode. The second semiconductor layer is made of a nondoped or n-type nitride semiconductor having a wider bandgap than the first semiconductor layer. The first main electrode is provided above the conductive portion and the second main electrode is provided above the high resistance portion.
摘要:
A nitride semiconductor device comprises: a substrate body including a conductive substrate portion and a high resistance portion; a first semiconductor layer of a nitride semiconductor provided on the substrate body; a second semiconductor layer provided on the first semiconductor layer; a first main electrode provided on the second semiconductor layer; a second main electrode provided on the second semiconductor layer; and a control electrode provided on the second semiconductor layer between the first main electrode and the second main electrode. The second semiconductor layer is made of a nondoped or n-type nitride semiconductor having a wider bandgap than the first semiconductor layer. The first main electrode is provided above the conductive portion and the second main electrode is provided above the high resistance portion.
摘要:
According to one embodiment, a semiconductor device having a semiconductor substrate, first to fourth semiconductor layers of nitride, first to third electrodes and a gate electrode is provided. The first semiconductor layer is provided directly on the semiconductor substrate or on the same via a buffer layer. The second semiconductor layer is provided so as to be spaced apart from the first semiconductor layer. The third semiconductor layer is provided on the second semiconductor layer and has a band gap wider than that of the second semiconductor layer. The fourth semiconductor layer insulates the first and second semiconductor layers. The first electrode forms an ohmic junction with the first to the third semiconductor layers. The second electrode is provided on the third semiconductor layer. The gate electrode is provided between the first and the second electrodes. The third electrode forms a Schottky junction with the first semiconductor layer.
摘要:
A bipolar transistor is provided which includes a GaAs substrate, an n-type collector region formed on the GaAs substrate, a p-type base region formed on the n-type collector region and having a p-type base layer of SiGe having a composition lattice-matched with the GaAs substrate, and an n-type emitter region formed on the p-type base region. A bipolar transistor may include a GaAs substrate, a collector region of a first conductivity type formed on the GaAs substrate and including a collector contact layer of the first conductivity type SiGe, which has a composition lattice-matched with the GaAs substrate, a base region of a second conductivity type formed on the collector region of the first conductivity type, and an emitter region of the first conductivity type formed on the base region of the second conductivity type.
摘要:
A bipolar transistor is provided which includes a GaAs substrate, an n-type collector region formed on the GaAs substrate, a p-type base region formed on the n-type collector region and having a p-type base layer of SiGe having a composition lattice-matched with the GaAs substrate, and an n-type emitter region formed on the p-type base region. A bipolar transistor may include a GaAs substrate, a collector region of a first conductivity type formed on the GaAs substrate and including a collector contact layer of the first conductivity type SiGe, which has a composition lattice-matched with the GaAs substrate, a base region of a second conductivity type formed on the collector region of the first conductivity type, and an emitter region of the first conductivity type formed on the base region of the second conductivity type.
摘要:
According to the present invention, by using 4-halogeno-3-hydroxybutanamide as a substrate in quaternary amination reaction with trialkylamine which is an important step in betaine (such as carnitine) preparation processes, it becomes possible to reduce the production of crotonic acid derivatives (the major by-product) greatly compared to conventional processes. Consequently, it becomes possible to prepare a betaine, such as carnitine, at a high yield.