Abstract:
An ink-based digital printing system suitable for use with hydrophilic and/or aqueous dampening fluids includes an imaging member having an imaging member material that is hydrophilic at the imaging surface.
Abstract:
Examples are disclosed herein relating to detecting a change in a substrate. A system can include a transducer that can be frequency matched to a substrate and to provide an electrical signal that can characterize a reflected sound wave by the substrate. The system can include an acoustic wave analysis system to detect a change in a physical characteristic of the substrate.
Abstract:
Parts made by additive manufacturing are often structural in nature, rather than having functional properties conveyed by a polymer or other component present therein. Printed parts having piezoelectric properties may be formed using powder particulates comprising a thermoplastic polymer and piezoelectric particles, wherein the piezoelectric particles are located (i) in the thermoplastic polymer at an outer surface of the powder particulates, (ii) within a core of the powder particulates, or (iii) combinations thereof. Additive manufacturing processes, such as powder bed fusion of powder particulates, may be employed to form printed objects in a range of shapes from the powder particulates. Melt emulsification may be used to form the powder particulates.
Abstract:
Parts made by additive manufacturing are often structural in nature, rather than having functional properties conveyed by a component present therein. Composite filaments suitable for additive manufacturing may comprise a continuous polymer phase of a first thermoplastic polymer and a second thermoplastic polymer that are immiscible with one another, and electrically conductive particles distributed in the continuous polymer phase, such as microparticles, nanoparticles, or any combination thereof. The first thermoplastic polymer is dissolvable or degradable and the second thermoplastic polymer is insoluble or non-degradable under specified conditions. Removal of the first thermoplastic polymer from a printed part may introduce porosity thereto, thereby inducing or enhancing piezoresistivity within the printed part. An aqueous mixture comprising the electrically conductive particles and the first and second thermoplastic polymers may have water removed therefrom, and the resulting composite residue may be extruded to form the composite filaments.
Abstract:
Parts made by additive manufacturing are often structural in nature, rather than having functional properties conveyed by a polymer or other component present therein. Printed parts having piezoelectric properties may be formed using compositions that are extrudable and comprise a plurality of piezoelectric particles and a plurality of carbon nanomaterials dispersed in at least a portion of a polymer material. The piezoelectric particles may remain substantially non-agglomerated when combined with the polymer material. The polymer material may comprise at least one thermoplastic polymer, optionally further containing at least one polymer precursor. The compositions may define an extrudable material that is a composite having a form factor such as a composite filament, a composite pellet, a composite powder, or a composite paste. Additive manufacturing processes using the compositions may comprise forming a printed part by depositing the compositions layer-by-layer.
Abstract:
Parts made by additive manufacturing are often structural in nature, rather than having functional properties conveyed by a polymer or other component present therein. Printed parts having piezoelectric properties may be formed using compositions comprising a polymer matrix comprising a first polymer material and a second polymer material that are immiscible with each other, and a plurality of piezoelectric particles substantially localized in one of the first polymer material or the second polymer material. The piezoelectric particles may remain substantially non-agglomerated when combined with the polymer matrix. The compositions may define a form factor such as a composite filament, a composite pellet, or an extrudable composite paste. Additive manufacturing processes using the compositions may comprise forming a printed part by depositing the compositions layer-by-layer.
Abstract:
Parts made by additive manufacturing are often structural in nature, rather than having functional properties conveyed by a polymer or other component. Printed parts having piezoelectric properties may be formed using compositions comprising a plurality of piezoelectric particles non-covalently interacting with at least a portion of a polymer material via π-π bonding, hydrogen bonding, electrostatic interactions stronger than van der Waals interactions, or any combination thereof. The piezoelectric particles may be dispersed in the polymer material and remain substantially non-agglomerated when combined with the polymer material. The polymer material may comprise at least one thermoplastic polymer, optionally further including a polymer precursor. The compositions may define an extrudable material that is a composite having a form factor such as a composite filament, a composite pellet, a composite powder, or a composite paste. Additive manufacturing processes using the compositions may comprise forming a printed part by depositing the compositions layer-by-layer.
Abstract:
Parts made by additive manufacturing are often structural in nature, rather than having functional properties conveyed by a polymer or other component present therein. Printed parts having piezoelectric properties may be formed using compositions comprising a plurality of piezoelectric particles and a polymer material comprising at least one thermoplastic polymer and at least one photocurable polymer precursor. The at least one photocurable polymer precursor may undergo a reaction in the presence of electromagnetic radiation, optionally undergoing a reaction with the piezoelectric particles, in the course of forming the printed part. The piezoelectric particles may be mixed with the polymer material and remain substantially non-agglomerated when combined with the polymer material. The compositions may define a form factor such as a composite filament, a composite pellet, or an extrudable composite paste, which may be utilized in forming printed parts by extrusion and layer-by-layer deposition, followed by curing.
Abstract:
Parts made by additive manufacturing are often structural in nature, rather than having functional properties conveyed by a polymer or other component present therein. Printed parts having piezoelectric properties may be formed using compositions comprising a plurality of piezoelectric particles located in a polymer matrix comprising a first polymer material and a sacrificial material that are immiscible with each other. The sacrificial material, which may comprise a second polymer material, may be removable from the first polymer material under specified conditions. The piezoelectric particles may remain substantially non-agglomerated when combined with the polymer matrix. The polymer matrix may be treated to remove the sacrificial material to introduce a plurality of pores. The compositions may have a form factor such as a composite filament, a composite pellet, a composite powder, or a composite paste. Additive manufacturing processes may comprise forming a printed part by depositing the compositions layer-by-layer.
Abstract:
Processes for preparing structured organic films (SOFs) comprising a plurality of segments and a plurality of linkers arranged as a covalent organic framework. The processes for preparing structured organic film may include mixing a plurality of molecular building blocks each comprising a segment and a number of functional groups to form a mixture of molecular building blocks; heating the mixture to form a homogeneous liquid comprising pre-SOFs; depositing the homogeneous liquid comprising pre-SOFs as a wet layer; and drying the wet layer to form a dry SOF from the pre-SOFs.