Abstract:
A method of transplantation is disclosed. The method comprising administering to a subject in need of transplantation of cells in suspension, a therapeutically effective amount of anti-third party cells having a central memory T-lymphocyte (Tcm) phenotype, said anti-third party cells being tolerance-inducing cells and capable of homing to the lymph nodes following transplantation, wherein said cells in suspension comprise non-hematopoietic cells or hematopoietic cells which are not stem cells. Methods of treating and kits are also provided.
Abstract:
A method of transplantation is disclosed. The method comprising administering to a subject in need of transplantation of cells in suspension, a therapeutically effective amount of tolerance inducing anti-third party cytotoxic T-lymphocytes (CTLs), wherein the tolerance inducing anti-third party CTLs are generated by directing T-lymphocytes of a donor against a third party antigen or antigens, the tolerance inducing anti-third party CTLs being substantially depleted of T-lymphocytes capable of developing into alloreactive CTLs, and wherein the tolerance inducing anti-third party CTLs do not comprise cells having a central memory T-lymphocyte (Tcm) phenotype, wherein the cells in suspension comprise non-hematopoietic cells or hematopoietic cells which are not stem cells. Methods of treating and kits are also provided.
Abstract:
A method of treating a subject in need of a non-syngeneic cell or tissue graft is disclosed. The method comprising: (a) transplanting into a subject a dose of T cell depleted immature hematopoietic cells, wherein the T cell depleted immature hematopoietic cells comprise less than 5×105 CD3+ T cells per kilogram body weight of the subject, and wherein the dose comprises at least about 5×106 CD34+ cells per kilogram body weight of the subject; and subsequently (b) administering to the subject a therapeutically effective amount of cyclophosphamide, wherein the therapeutically effective amount comprises 25-200 mg per kilogram body weight, thereby treating the subject.
Abstract:
A method of treating a pulmonary disorder or injury in a subject in need thereof is disclosed. The method comprising administering to the subject non-syngeneic pulmonary tissue cells in suspension comprising an effective amount of hematopoietic precursor cells (HPCs) or supplemented with HPCs, wherein the effective amount is a sufficient amount to achieve tolerance to the pulmonary tissue cells in the absence of chronic immunosuppressive regimen. A method of inducing donor specific tolerance in a subject in need of a pulmonary cell or tissue transplantation is also disclosed.
Abstract:
A method of treating a subject in need of a non-syngeneic cell or tissue graft is disclosed. The methos comprising: (a) transplanting into a subject a dose of T cell depleted immature hematopoetic cells, wherein the T cell depleted immature hematopoetic cells comprise less than 5×105 CD3+ T cells per kilogram body weight of the subject, and wherein the dose comprises at least about 5×106 CD34+ cells per kilogram body weight of the subject, and wherein the T cell depleted immature hematopoetic cells are obtained by separating the T cells from the immature hematopoetic cells by magnetic cell sorting, and (b) administering to the subject a therapeutically effective amount of cyclophosphamide, wherein the therapeutically effective amount comprises 25-200 mg per body weight, thereby treating the subject.
Abstract:
A method of treating a subject in need of a non-syngeneic cell or tissue graft is disclosed. The method comprising: (a) transplanting into a subject a dose of T cell depleted immature hematopoietic cells, wherein the T cell depleted immature hematopoietic cells comprise less than 5×105 CD3+ T cells per kilogram body weight of the subject, and wherein the dose comprises at least about 5×106 CD34+ cells per kilogram body weight of the subject; and subsequently (b) administering to the subject a therapeutically effective amount of cyclophosphamide, wherein the therapeutically effective amount comprises 25-200 mg per kilogram body weight, thereby treating the subject.
Abstract:
A method of generating an isolated population of cells comprising anti-third party cells having a central memory T-lymphocyte (Tcm) phenotype, the cells being tolerance-inducing cells and/or endowed with anti-disease activity, and capable of homing to the lymph nodes following transplantation is disclosed. The method comprising: (a) contacting peripheral blood mononuclear cells (PBMC) with a third party antigen or antigens in the presence of IL-21 so as to allow enrichment of antigen reactive cells; and (b) culturing the cells resulting from step (a) in the presence of IL-21, IL-15 and IL-7 in an antigen free environment so as to allow proliferation of cells comprising the central memory T-lymphocyte (Tcm) phenotype.
Abstract:
A method of generating an isolated population of non graft versus host disease (GvHD) inducing cells comprising a central memory T-lymphocyte (Tcm) phenotype, the cells being tolerance inducing cells and/or endowed with anti-disease activity, and capable of homing to the lymph nodes following transplantation is disclosed. The method comprising: (a) providing a population of at least 70% memory T cells; (b) contacting the population of memory T cells with an antigen or antigens so as to allow enrichment of antigen reactive cells; and (c) culturing the cells resulting from step (b) in the presence of cytokines so as to allow proliferation of cells comprising the Tcm phenotype. Cells generated by the method, pharmaceutical compositions and methods of treatment are also disclosed.
Abstract:
A pharmaceutical composition comprising as an active ingredient an isolated population of cell suspension from a mammalian fetal pulmonary tissue is disclosed. The fetal pulmonary tissue is at a developmental stage corresponding to that of a human pulmonary organ/tissue at a gestational stage selected from a range of about 20 to about 22 weeks of gestation. Methods of using the pharmaceutical composition are also disclosed.