摘要:
A diagnostic device and method of an engine exhaust purifying system, which perform active control of an air-fuel ratio and can make diagnosis of air-fuel ratio sensors, catalysts, etc. in the engine exhaust purifying system with high accuracy and reliability while avoiding a worsening of exhaust emissions, an increase of revolution variations, etc. The diagnostic device comprises an exhaust air-fuel ratio control unit for performing control to keep an air-fuel ratio of exhaust gas flowing into a main catalyst near a stoichiometric ratio in accordance with outputs of downstream air-fuel ratio sensors, a rich/lean switching unit for switching over an air-fuel ratio in each of the cylinder groups to be rich or lean, thereby making diagnosis of each downstream air-fuel ratio sensor, a response detecting unit for detecting a response of the downstream air-fuel ratio sensor when the rich/lean switching of the air-fuel ratio in each cylinder group is performed, and a downstream sensor deterioration determining unit for determining a deterioration of the downstream air-fuel ratio sensor based on the detected response.
摘要:
Pressure detection means detects the pressure of an evaporation purge system that includes a fuel tank and a communicating tube, which connects a canister for adsorbing and retaining fuel vapor to an intake pipe. Shutout means shuts out the evaporation purge system from atmospheric air. A pump is driven for pressurization or depressurization purposes while the shutout means shuts out the evaporation purge system from atmospheric air. The pump is stopped when the pressure detected by the pressure detection means reaches a predetermined level. A leak judgment is formulated in accordance with pump drive time and a pressure change after pump stoppage.
摘要:
A diagnostic device and method of an engine exhaust purifying system, which perform active control of an air-fuel ratio and can make diagnosis of air-fuel ratio sensors, catalysts, etc. in the engine exhaust purifying system with high accuracy and reliability while avoiding a worsening of exhaust emissions, an increase of revolution variations, etc. The diagnostic device comprises an exhaust air-fuel ratio control unit for performing control to keep an air-fuel ratio of exhaust gas flowing into a main catalyst near a stoichiometric ratio in accordance with outputs of downstream air-fuel ratio sensors, a rich/lean switching unit for switching over an air-fuel ratio in each of the cylinder groups to be rich or lean, thereby making diagnosis of each downstream air-fuel ratio sensor, a response detecting unit for detecting a response of the downstream air-fuel ratio sensor when the rich/lean switching of the air-fuel ratio in each cylinder group is performed, and a downstream sensor deterioration determining unit for determining a deterioration of the downstream air-fuel ratio sensor based on the detected response.
摘要:
An anomaly in a high-pressure fuel system of an internal combustion engine is diagnosed early on and with high precision, and, further, the anomaly site is identified. With respect to a diagnostic device for a direct injection internal combustion engine, there is provided: an injection correction amount computation means (302) that computes an injection correction amount so as to bring a detected air-fuel ratio to a target air-fuel ratio; a fuel injection valve control means (202) that controls the fuel injection valves with the fuel injection amount corrected based on the injection correction amount; a discharge correction amount computation means (305) that computes a discharge correction amount so as to bring a detected fuel pressure to a target fuel pressure; a fuel pump control means (203) that controls the fuel pump with the discharge amount corrected based on the discharge correction amount; a fuel pressure value shifting means (204) that shifts the value of the detected fuel pressure if the injection correction amount deviates from a predetermined range and until the injection correction amount converges to a given amount within the predetermined range; and an anomaly determination means (306) that determines which of the fuel pump, the fuel injection valves, and the fuel pressure sensor has an anomaly based on the discharge correction amounts before the fuel pressure values shift starts and after the fuel pressure value shift ends, and on the injection correction amount before the fuel pressure value shift starts.
摘要:
There is provided a control apparatus for a cylinder injection internal combustion engine which suppresses fuel pulsation caused by cam phase deviation and thereby prevents internal combustion engine exhaust deterioration, so that the reliability of a high-pressure fuel system using a high-pressure fuel pump is improved. The control apparatus for a cylinder injection internal combustion engine includes a high-pressure fuel pump that raises the pressure of fuel and discharges the fuel to a fuel rail, and a fuel pressure sensor that detects a pressure of fuel stored in the fuel rail. The control apparatus controls the high-pressure fuel pump based on the fuel pressure detected by the fuel pressure sensor. The control apparatus further includes a cam phase estimation means for estimating a phase of a cam shaft of the internal combustion engine which drives the high-pressure fuel pump, and based on the phase estimation value calculated by the cam phase estimation means, corrects the amount of controlling the high-pressure fuel pump.
摘要:
A diagnostic device and method of an engine exhaust purifying system, which perform active control of an air-fuel ratio and can make diagnosis of air-fuel ratio sensors, catalysts, etc. in the engine exhaust purifying system with high accuracy and reliability while avoiding a worsening of exhaust emissions, an increase of revolution variations, etc. The diagnostic device comprises an exhaust air-fuel ratio control unit for performing control to keep an air-fuel ratio of exhaust gas flowing into a main catalyst near a stoichiometric ratio in accordance with outputs of downstream air-fuel ratio sensors, a rich/lean switching unit for switching over an air-fuel ratio in each of the cylinder groups to be rich or lean, thereby making diagnosis of each downstream air-fuel ratio sensor, a response detecting unit for detecting a response of the downstream air-fuel ratio sensor when the rich/lean switching of the air-fuel ratio in each cylinder group is performed, and a downstream sensor deterioration determining unit for determining a deterioration of the downstream air-fuel ratio sensor based on the detected response.
摘要:
Any anomaly in energy transfer is appropriately diagnosed in a vehicle. The energy transfer system of a vehicle is provided with: an input energy computation means (e.g., the chemical energy of fuel computation means) for determining the input energy of the energy transfer system; an output energy computation means (e.g., the vehicle kinetic energy computation means) for determining the energy output of the energy transfer system; and a comparing means (e.g., the comparing means) for comparing the input energy with the output energy. Any anomaly in the energy transfer system (e.g., any anomaly in fuel efficiency) is determined based on the result of comparison by the comparing means.
摘要:
A diagnostic apparatus is combined with a high-pressure fuel supply system including a high-pressure fuel pump, a fuel rail, injectors, and a fuel pressure measuring unit for measuring fuel pressure in the fuel rail. The diagnostic apparatus is capable of detecting troubles in the high-pressure fuel pump and injectors and of discriminating between a trouble in the high-pressure fuel pump and a trouble in the injectors includes. The diagnostic apparatus includes: a pump discharge component calculating unit 111 for determining fuel pressure variation synchronous with the operation of the high-pressure fuel pump from the fuel pressure, an injection component calculating unit 112 for determining fuel pressure variation synchronous with the operation of the injectors, a rotating speed component calculating unit 113 for determining fuel pressure variation synchronous with the rotation of a drive shaft for driving the high-pressure fuel pump, a control component calculating unit 114 for determining fuel variation during a control operation for adjusting the fuel pressure to a predetermined desired fuel pressure, and a direct current component calculating unit 115 for calculating a direct current component of fuel pressure variation. The diagnostic apparatus decides whether or not the high-pressure fuel system is malfunctioning on the basis of results of calculation made by those calculating units.
摘要:
A control apparatus for an internal combustion engine has an oxygen storage volume computing unit for computing an oxygen storage volume of a catalyst by using a real air/fuel ratio detected by an air/fuel ratio sensor installed on the upstream side of a catalyst, a center air/fuel ratio representing a stoichiometric air/fuel ratio and an estimated air flow volume or detecting a flow rate of air flowing into the catalyst. A center air/fuel ratio correcting unit for correcting a center air/fuel ratio based on output of a rear air/fuel ratio sensor provided on the downstream side of the catalyst, and an oxygen storage volume computed by an oxygen storage volume computing unit, and the oxygen storage volume computing unit computes an oxygen storage volume by using a center air/fuel ratio corrected by the center air/fuel ratio correcting unit.
摘要:
There is provided a control apparatus for a cylinder injection internal combustion engine which suppresses fuel pulsation caused by cam phase deviation and thereby prevents internal combustion engine exhaust deterioration, so that the reliability of a high-pressure fuel system using a high-pressure fuel pump is improved. The control apparatus for a cylinder injection internal combustion engine includes a high-pressure fuel pump that raises the pressure of fuel and discharges the fuel to a fuel rail, and a fuel pressure sensor that detects a pressure of fuel stored in the fuel rail. The control apparatus controls the high-pressure fuel pump based on the fuel pressure detected by the fuel pressure sensor. The control apparatus further includes a cam phase estimation means for estimating a phase of a cam shaft of the internal combustion engine which drives the high-pressure fuel pump, and based on the phase estimation value calculated by the cam phase estimation means, corrects the amount of controlling the high-pressure fuel pump.