摘要:
Provided is a precoding method for generating, from a plurality of baseband signals, a plurality of precoded signals to be transmitted over the same frequency bandwidth at the same time, including the steps of selecting a matrix F[i] from among N matrices, which define precoding performed on the plurality of baseband signals, while switching between the N matrices, i being an integer from 0 to N−1, and N being an integer at least two, generating a first precoded signal z1 and a second precoded signal z2, generating a first encoded block and a second encoded block using a predetermined error correction block encoding method, generating a baseband signal with M symbols from the first encoded block and a baseband signal with M symbols the second encoded block, and precoding a combination of the generated baseband signals to generate a precoded signal having M slots.
摘要:
An orthogonal transform subunit 14 separates a reception signal into carriers on a per-symbol basis. In a channel characteristics estimation subunit 15, (i) an SP channel characteristics estimation part 20 calculates channel characteristics at carriers to which SPs are allocated, by using signals output from the orthogonal transform subunit 14, (ii) a symbol direction interpolation part 30 interpolates, in the symbol (time) direction, signals output from the SP channel characteristics estimation part 20, (iii) a TMCC channel characteristics estimation part 40 calculates channel characteristics at carriers to which TMCCs are allocated, by using signals output from the orthogonal transfer subunit 14, and (iv) an adaptive interpolation part 50 calculates filter coefficients by using signals output from the symbol direction interpolation part 30 and the TMCC channel characteristics estimation part 40, and adaptively interpolates signals output from the symbol direction interpolation part 30 by using values of the calculated filter coefficients.
摘要:
It is intended to provide an electronic component mounting device and an operation performing method for mounting electronic components so that both the operation quality and the productivity can be improved. Height precision division information that divide the height precision required for up and down movements of operating heads into the first division which indicates a normal height precision and the second division which indicates that a high height precision is required based on the type of electronic components are stored as operation data beforehand. In operation performing procedures, when an electronic component belongs to the first division, an operating head is made to move up and down based on an approximate operation position height derived from an approximate curved surface of the top surface of a board which is calculated by using the height measurement result obtained by measuring a plurality of height measuring points on the surface of the board, and when the electronic component belongs to the second division, the operating head is made to move up and down based on an individual operation position height obtained by individually measuring the board height at the operation position.
摘要:
The light use efficiency of a thin film diode is improved even when the semiconductor layer of the diode has a small thickness, thereby improving the light detection sensitivity of the diode. A thin film diode (130) having a first semiconductor layer (131) including, at least, an n-type region (131n) and a p-type region (131p) is provided on one side of a substrate (101), and a silicon layer (171) is provided between the substrate and the first semiconductor layer, facing the first semiconductor layer. Asperities are formed on the side of the silicon layer facing the first semiconductor layer, and asperities are provided on the side of the first semiconductor layer facing the silicon layer and the side thereof opposite the side facing the silicon layer.
摘要:
The present invention relates to digital data communication and provides an efficient method for generating multi-dimensional constellations for digital data modulation with a high degree of modulation diversity, a method for transmitting and receiving data on the basis of such constellations, and a corresponding apparatus. This is achieved by considering only multi-dimensional rotation matrices with all elements on the diagonal having the same first absolute value and all other elements having the same non-zero second absolute value. In this manner, multi-dimensional rotation matrices can be generated having only a single independent parameter and a structure that is as regular as possible. The independent parameter can be configured in order to minimize the error probability for various constellation sizes.
摘要:
In order is to generate a pilot signal for estimating a transmission characteristic of a transmission channel suitable for OFDM/OQAM multicarrier modulation, a phase reference pilot symbol of which a modulation amplitude is suppressed to zero, and an amplitude reference pilot signal obtained through modulation performed by using an amplitude known to a reception end are transmitted from a transmission end. Further, the transmission characteristic of the transmission channel is estimated and compensated using the phase reference pilot signal and the amplitude reference pilot signal at the reception end. Accordingly, it is possible to simplify a frame generation process performed at the transmission end, and reduce transmission power for the phase reference pilot signal.
摘要:
A challenge to be met by the present invention is to provide an electronic component mounting machine and an electronic component loading head in which the loading head has two rows of nozzle shafts and that can promote miniaturization of the machine by minimizing the loading head. In a loading head having two rows of nozzles (L1 and L2) including a plurality of nozzle shafts arranged in rows and at a predetermined nozzle arrangement pitch, a θ rotary drive mechanism that rotates the nozzle shafts around their axes is configured so as to include driven pulleys (28) coupled to the respective nozzle shafts; a plurality of idlers (30) interposed between the two rows of nozzles (L1 and L2); and endless drive belts (29A and 29B) that transmit rotation of the θ-axis motors (27A and 27B) to the driven pulleys (28). Drive surfaces (29a) of the respective driving belts (29A and 29B) are looped around the respective drive pulleys and the respective driven pulleys, and the other sides of the respective drive surfaces (29a) are looped while guided by the idlers (30).
摘要:
In a transmitter, at least one pilot carrier which is modulated with a signal sequence including a reference pilot signal sequence represented by any of amplitude modulation vectors {α, α, −α, −α}, {α, −α, −α, α}, {−α, α, α, −α}, and {−α, −α, α, α} where α represents a real number other than 0, is generated, and an OFDM/OQAM multicarrier modulation signal is transmitted. In a receiver, the OFDM/OQAM multicarrier modulation signal is demodulated, and transmission channel characteristics are estimated and corrected based on two successive demodulation vectors in a time direction which are obtained by demodulating the pilot carrier.
摘要:
An coding apparatus includes a number-of-additional-bits calculating means 107 for calculating the number of bits which can be set, as additional bits, at an end of a code sequence in which an information source is entropy-coded on the basis of information about the end of the code sequence, the information being driven from code data which form the code sequence, and an additional bit coding means 108 for setting the additional bits having the number of bits at the end of the code sequence.
摘要:
There is provided a signal demodulating device, including: a time frequency converting unit (6) for converting a frequency division multiplexing signal on a time axis into a signal on a frequency axis to output a data carrier, a pilot carrier, and a transmission control carrier; an equalizer (7) for equalizing the data carrier and the transmission control carrier according to a characteristic value of a transmission line obtained from the pilot carrier to output an equalized data carrier and an equalized transmission control carrier; a first decoding unit (9) for decoding the equalized transmission control carrier; and a first correcting unit (10) for performing first error-correction on an output of said first decoding unit (9) to output first control information and a first decoding flag that indicates a status of the first error-correction.