Abstract:
A fixed scroll (16) and a movable scroll (18) cooperatively define compressing chambers therebetween. The movable scroll is driven by a crank pin (12) eccentrically attached to a shaft (11) which is rotated by an external driving source. A surface treatment for abrasion resistance is applied to at least one of an end surface of the crank pin and a confronting end plate of the movable scroll. It may also be arranged that an abrasion-resistant plate is interposed between the end surface of the crank pin and the confronting end plate of the movable scroll.
Abstract:
An improved electrical insulation structure is provided for a motor driven fluid apparatus having the compression and drive mechanisms within a hermetically sealed housing. The drive mechanism comprises a drive shaft operatively connected to the compression mechanism and a motor for rotating the drive shaft. The motor comprises a rotor fixedly surrounding the drive shaft and a stator assembly surrounding the rotor with a small radial air gap therebetween. The stator assembly comprises an annular magnetic core fixedly secured to the housing. The core has a plurality of axially extending slots and a plurality of windings, each having a plurality of coils formed by multiple turns of an enamel-coated conductor. The multiple turns of the conductor have side turn portions which are disposed within the axially extending slots and end turn portions which axially project from the slots and are generally disposed about the axial end surfaces of the core. The connection points between the windings themselves, and between the windings and conductor leads, are fixedly covered with a film of insulating material, such as epoxy resin. Alternatively, a portion of the surface of the housing is fixedly covered with a film of insulating material, such as aluminum oxide formed by anodization.
Abstract:
A hermetic type scroll compressor includes a hermetically sealed compressor housing formed by first and second cup-shaped casings. A cylindrical housing portion is disposed between the first and second cup-shaped casings and has an annular inner block extending inwardly therefrom. The inner block divides the interior of the compressor into a first chamber in which the drive mechanism is housed and a second chamber in which the compression mechanism is housed. At one end, the drive shaft is supported by the inner block through bearings, and at the its other end, the drive shaft is supported by an annular projection extending from and integral with the second cup-shaped casing. Additionally, the stator is fixedly secured to the second cup-shaped casing. A gas passage, which allows the outer diameter of the compressor to be reduced, extends through the inner block to provide fluid communication between the first and second chambers.
Abstract:
The present invention discloses a reliable rotation preventing/thrust bearing device for use in an orbiting member fluid displacement apparatus. The rotation preventing/thrust bearing device includes a discrete fixed portion, a discrete orbital portion, and bearing elements. The fixed portion includes a first annular race and a first ring, both of which are formed separately. The first annular race is placed in a loose fit surrounding a first annular step in an inner surface of the housing and the first ring is attached to the housing. The orbital portion includes a second annular race and a second ring, both of which are formed separately. The second annular race is placed in a loose fit surrounding a second annular step in an end plate of the orbiting member and the second ring is attached to the end plate of the orbiting member. A plurality of pockets of the rings face one another in generally aligned pairs. A bearing element is received in each aligned pair of pockets to prevent the rotation of the orbiting member by the bearing elements interacting with the first and second rings and to carry the axial thrust load from the orbiting member. The first and second annular anti-wear plates are overlaid surrounding the first and second annular races, respectively. The first and second annular anti-wear plates are fixedly placed within the first and second annular steps respectively in order to prevent the circumferential and radial movement thereof.
Abstract:
A method for assembling a motor driven fluid compressor having a compression mechanism, such as a scroll type fluid compression mechanism and a drive mechanism which are contained within a hermetically sealed housing. The compression mechanism includes fixed and orbiting scrolls. The drive mechanism includes a drive shaft and a motor rotating the drive shaft. The housing is divided into first and second cup-shaped portions and a cylindrical portion. An opening end of the first cup-shaped portion is releasably and hermetically connected to one opening end of the cylindrical portion. An opening end of the second cup-shaped portion is releasably and hermetically connected to another opening end of the cylindrical portion. First, second and third sub-assemblies are separately prepared, and then are assembled into the compressor. The first sub-assembly is formed by the first cup-shaped portion and at least one internal component part of the compressor. The second sub-assembly is formed by the second cup-shaped portion and at least one internal component part of the compressor. The third sub-assembly is formed by the cylindrical portion and the remainder of the internal component parts of the compressor. Accordingly, the compressor can be easily assembled under a flexible management.
Abstract:
A scroll type fluid displacement apparatus including a housing with a fluid inlet port and fluid outlet port is disclosed. A fixed scroll is joined with the housing and has a first circular end plate from which a first wrap extends. An orbiting scroll has a second circular end plate from which a second wrap extends. The first and second wraps interfit at an angular and radial offset to make a plurality of line contacts to define at least one pair of sealed off fluid pockets. A driving mechanism, which includes a drive shaft, is operatively connected to the orbiting scroll to effect the orbital motion of the orbiting scroll at radius Ror, while the rotation of the orbiting scroll is prevented by a rotation preventing/thrust bearing device, whereby the fluid in the fluid pockets moves inwardly or outwardly and changes in volume. The center of the first circular end plate is aligned with the center line of the housing and the center of the first wrap is radially offset from the center of the first circular end plate by the distance 1/2 Ror. The center of the second wrap is radially offset from the center of the second circular end plate by the distance 1/2 Ror. The drive shaft has a center line, which is aligned with the center line of the housing, and also has a crank pin, the center line of which is aligned with the center of the second circular end plate.
Abstract:
A brake control device, wherein control is executed that keeps braking force generated to wheels of a vehicle to a predetermined value or more when detected operating pressure has reached a control determination value, the detected operating pressure being operating pressure input to a brake operating member in a state that the vehicle stops and applied to a working fluid in response to operation force increased using negative pressure generated in an internal combustion engine of the vehicle and being the operating pressure detected by an operating pressure detecting unit, and when the detected operating pressure has exceeded dead point operating pressure which is the operating pressure at a negative pressure dead point at which an effect of increase of the operation force using the negative pressure disappears, at least any one of the detected operating pressure and the control determination value is corrected and the control is executed based on the corrected value. Therefore, the brake control device can appropriately keep the braking force.
Abstract:
An acceleration/deceleration detecting system includes an acceleration/deceleration detector configured to be disposed in a measurement object and detect acceleration/deceleration of the measurement object, an acceleration/deceleration device configured to accelerate or decelerate the measurement object, and a calculation device configured to determine that a detection value of the acceleration/deceleration detector is an offset error or a detection error of the acceleration/deceleration detector, when an actual acceleration/deceleration direction of the measurement object is different from an acceleration/deceleration direction shown by a detection value of the acceleration/deceleration detector in a state that the measurement object is accelerated or decelerated by the acceleration/deceleration device.
Abstract:
A brake control device, wherein control is executed that keeps braking force generated to wheels of a vehicle to a predetermined value or more when detected operating pressure has reached a control determination value, the detected operating pressure being operating pressure input to a brake operating member in a state that the vehicle stops and applied to a working fluid in response to operation force increased using negative pressure generated in an internal combustion engine of the vehicle and being the operating pressure detected by an operating pressure detecting unit, and when the detected operating pressure has exceeded dead point operating pressure which is the operating pressure at a negative pressure dead point at which an effect of increase of the operation force using the negative pressure disappears, at least any one of the detected operating pressure and the control determination value is corrected and the control is executed based on the corrected value. Therefore, the brake control device can appropriately keep the braking force.
Abstract:
A vehicle state judging apparatus includes a wheel speed sensor provided on a vehicle detecting a wheel speed, a shift position sensor detecting a position of a shift lever, an acceleration sensor detecting acceleration acting on the vehicle, and a judging unit judging a vehicle state from detection values of the wheel speed sensor, the shift position sensor and the acceleration sensor. The judging unit judges that a travel direction of the vehicle is switched when the judging unit detects that the shift lever is switched from a position other than forward movement to a position of the forward movement or switched from a position other than backward movement to a position of the backward movement, detects that the wheel speed is not lower than a first reference speed, and further detects that the wheel speed becomes not higher than a second reference speed before the moment of detection.