Abstract:
A photo-detecting device including a plurality of pixels, each including at least one alternate stack of photodiodes and electrically conducting electrodes. Each photodiode includes one intrinsic amorphous semiconductor layer in contact with one doped amorphous semiconductor layer distinct from the amorphous semiconductor layers in other photodiodes, and is arranged between two electrodes. Each pair of photodiodes includes one of the electrodes arranged between photodiodes. In each pixel: each electrode includes an electrically conducting portion not superposed on other electrodes of the pixel and electrically connected to one interconnection hole filled with an electrically conducting material; and portions of an electrically conducting material are superposed approximately on each of non-superposed portions of electrodes.
Abstract:
A static memory cell of the metal-insulator-semiconductor type, which can be used in the microelectronics field for producing random access memories for storing binary information. This MIS type memory cell is a random access static memory cell known under the abbreviation SRAM. A bistable flip-flop is formed by a MIS transistor and a parasitic bipolar transistor. The source and drain of the MIS transistor respectively formed by constituting the emitter and collector of the bipolar transistor. The region of the channel of the MIS transistor located between the source and drain serves as the base for the bipolar transistor. The base is completely isolated from the outside of the memory cell. The gate electrode of the MIS transistor is electrically isolated from the region of the channel. There is an addressing circuit for the flip-flop for storing binary information in the form of the absence or presence of current.
Abstract:
A photo-detecting device including a plurality of pixels, each including at least one alternate stack of photodiodes and electrically conducting electrodes. Each photodiode includes one intrinsic amorphous semiconductor layer in contact with one doped amorphous semiconductor layer distinct from the amorphous semiconductor layers in other photodiodes, and is arranged between two electrodes. Each pair of photodiodes includes one of the electrodes arranged between photodiodes. In each pixel: each electrode includes an electrically conducting portion not superposed on other electrodes of the pixel and electrically connected to one interconnection hole filled with an electrically conducting material; and portions of an electrically conducting material are superposed approximately on each of non-superposed portions of electrodes.
Abstract:
Method for producing a silicon technology transistor on a nonconductor. This method consists in particular of forming a thin film of silicon (6) on a nonconductor (4) and then a mask (8, 10) including one opening (13) at the location provided for the channel (26) of the transistor; of locally oxidizing (14) the unmasked silicon to form an oxidation film; of eliminating the mask; of forming source (18) and drain (20) regions in the silicon by ion implantation with the oxidation film being used to mask this implantation; of eliminating the oxidation film; and of forming a thin gate nonconductor between the source and the drain and then forming the gate.