摘要:
An insulated gate semiconductor device (10) has a double spacer gate structure (45). To form the gate structure (45), a stack having sidewalls (22) is formed over a major surface (12) of a semiconductor substrate (11). A gate oxide (23) is then formed over the major surface (12) adjacent the sidewalls (22). A first polysilicon layer (24) is deposited on the gate oxide (23) and the stack. The first polysilicon layer (24) is etched to form a first conductive spacer (32) of the gate structure (45). A second polysilicon layer (44) is deposited on first spacer (32) and the stack. The second polysilicon layer (44) is then etched to form a second conductive spacer (46) of the gate structure (45). Because the double spacer gate structure (45) is formed without relying on photolithographic techniques, its size is smaller than the size of a gate structure formed using conventional photolithography.
摘要:
A method is provided for maximizing activation of a gate electrode while preventing source and drain regions from being excessively doped. The gate electrode is partially doped when exposed the source/drain implantation step. Then, the gate electrode is fully doped by the selective implantation step while the source/drain regions are blocked. Separate annealing steps are provided subsequent to the gate doping step and the source and drain implantation step.
摘要:
A method for forming an isolation structure (22) on a SOI substrate (11) is provided. A three layer stack of an etchant barrier layer (16), a stress relief layer (17), and an oxide mask layer (18) is formed on the SOI substrate (11). The three layer stack is patterned and etched to expose portions of the etchant barrier layer (16). The silicon layer (13) below the exposed portions of the etchant barrier layer (16) is oxidized to form the isolation structure (22). The isolation structure (22) comprises a bird's head region (21) with a small encroachment which results in higher edge threshold voltage. The method requires minimum over-oxidation and provides for an isolation structure (22) that leaves the SOI substrate (11) planar. Minimal over-oxidation reduces the number of dislocations formed during the oxidation process and improves the source to drain leakage of the device.
摘要:
A CMOS structure and method of achieving self-aligned raised source/drain for CMOS structures on SOI without relying on selective epitaxial growth of silicon. In the method, CMOS structures are provided by performing sacrificial oxidation so that oxidation occurs on the surface of both the SOI and BOX interface. This allows for oxide spacer formation for gate-to-source/drain isolation which makes possible raised source/drain fabrication without increasing contact resistance.
摘要:
Capacitance between source/drain and p-type substrate in SOI CMOS circuits is reduced by implanting an n-type layer below the oxide layer, thereby forming a fully depleted region that adds to the thickness of the oxide layer, while creating a junction capacitance region that reduces the total device to substrate capacitance.
摘要:
The present invention provides improved controllability of the lateral etch encroachment of silicon under the spacer, in light of the fact that the exemplary method, in accordance with the present invention, comprises the step of implanting neutral ions such as Ge or Ar into the source/drain regions. The implantation creates an amorphous silicon surface, and leaves a laterally extended amorphous layer under the spacer and a well defined amorphous/crystalline interface. The etch of silicon then extends laterally underneath the spacer, due to the higher etch rate of amorphous silicon and abrupt interface between amorphous and crystalline silicon.
摘要:
A method and structure for a CMOS device comprises depositing a silicon over insulator (SOI) wafer over a buried oxide (BOX) substrate, wherein the SOI wafer has a predetermined thickness; forming a gate dielectric over the SOI wafer; forming a shallow trench isolation (STI) region over the BOX substrate, wherein the STI region is configured to have a generally rounded corner; forming a gate structure over the gate dielectric; depositing an implant layer over the SOI wafer; performing one of N-type and P-type dopant implantations in the SOI wafer and the implant layer; and heating the device to form source and drain regions from the implant layer and the SOI wafer, wherein the source and drain regions have a thickness greater than the predetermined thickness of the SOI wafer, wherein the gate dielectric is positioned lower than the STI region.
摘要:
The present invention provides improved controllability of the lateral etch encroachment of silicon under the spacer, in light of the fact that the exemplary method, in accordance with the present invention, comprises the step of implanting neutral ions such as Ge or Ar into the source/drain regions. The implantation creates an amorphous silicon surface, and leaves a laterally extended amorphous layer under the spacer and a well defined amorphous/crystalline interface. The etch of silicon then extends laterally underneath the spacer, due to the higher etch rate of amorphous silicon and abrupt interface between amorphous and crystalline silicon.
摘要:
An insulated gate semiconductor device (10) has a double spacer gate structure (45). To form the gate structure (45), a stack having sidewalls (22) is formed over a major surface (12) of a semiconductor substrate (11). A gate oxide (23) is then formed over the major surface (12) adjacent the sidewalls (22). A first polysilicon layer (24) is deposited on the gate oxide (23) and the stack. The first polysilicon layer (24) is etched to form a first conductive spacer (32) of the gate structure (45). A second polysilicon layer (44) is deposited on first spacer (32) and the stack. The second polysilicon layer (44) is then etched to form a second conductive spacer (46) of the gate structure (45). Because the double spacer gate structure (45) is formed without relying on photolithographic techniques, its size is smaller than the size of a gate structure formed using conventional photolithography.
摘要:
An insulated gate semiconductor device (10) having a gate structure (45) that includes a conductive spacer (32) and an extension region (46) extending from the conductive spacer (32). To form the gate structure (45), a stack having sidewalls (22) is formed over a major surface (12) of a semiconductor substrate (11). A gate dielectric (23) is then formed over the major surface (12) adjacent to the sidewalls (22). The conductive spacer (32) is formed on the gate dielectric (23). The extension region (46) is then formed using selective growth or deposition and patterning of polysilicon adjacent the conductive spacer (32).