Abstract:
A heat exchanger (10) is provided to transfer heat between a first and second fluid flow. The heat exchanger 10 includes a flow path (20) provided in the form of one or more heat exchange tubes (40, 40A-C), and a second flow path (30) provided in the form of one or more serpentine heat exchange tubes (42, 42A-C). The tube(s) (40, 40A-C) is (are) nullwovennull together with the tube(s) (42, 42A-C) such that they are perpendicular to each other. The heat exchanger (10) can provide particular advantages when used as a suction line heat exchanger in a transcritical cooling system (12).
Abstract:
A heat exchanger (50) is provided for transferring heat between first and second fluids (52) and (54) having a maximum operating mass flow rate through the heat exchanger (50) and mass flow rates that are substantially proportional to each other. The heat exchanger (50) provides essentially constant outlet temperatures for the first and second fluids (52,54) for all of the flow rates within the operating spectrum of the heat exchanger (50) without the use of an active control system. The heat exchanger (50) is of particular use in the fuel processing system (36) of proton exchange membrane type fuel cell systems.
Abstract:
A compact cooling system includes a mounting panel adapted to receive a plurality of at least three cooling units, a cooling fan, and a fan drive mechanism. The mounting panel supports the fan and drive mechanism in a manner allowing rotation of the fan about the axis of rotation. A front side of the mounting panel is adapted for receiving and supporting the cooling units in a pattern defining a cantilevered, tubular polygonal solid disposed about the fan. The mounting panel includes a convex central region extending into the tubular polygonal solid and receiving the drive mechanism in operative connection to the fan. By virtue of this arrangement, a very compact cooling system is provided. The tubular polygonal shape of the cooling units, when mounted on the mounting panel, forms an air duct for directing a flow of cooling air induced by the fan through the cooling units. Positioning the drive mechanism inside the convex central region of the mounting panel significantly reduces the length of the cooling system along the axis of rotation.
Abstract:
Distribution of liquid refrigerant in an evaporator having a pair of spaced headers (20), (22) and a plurality of tubes (24) extending between the headers (20), (22) to define a plurality of spaced refrigerant passages (42) is achieved through the use of at least one refrigerant inlet (30), (32), (34), (36) within one of the headers (20). The inlet has a first port (49) adapted to be connected to a source of refrigerant to be evaporated, and oppositely directed second and third ports (50), (52) connected to the first port (49). The second port (50) is directed away from one side (44) of the header (20) while the third port (54) is directed toward the side (44) of the header (20).
Abstract:
Uncomfortable air temperatures in an air conditioned vehicle immediately following start up of the air conditioning system or when the air conditioning system compressor is being driven at low speeds are avoided in a cooling system including a blower (22) for blowing air into a compartment (10). An air/liquid heat exchanger (30) is located at the outlet (34) of the blower (22) for cooling air received from the blower (22). The system includes a compressor (50), an expansion device (58), a condenser (54) and a liquid/refrigerant evaporator (64) for expanding refrigerant and cooling a liquid coolant which is circulated through a thermal storage device (92) and the heat exchanger (30) by a pump (86). Upon system start up, or when the compressor (50) is being driven at low speed, the coolant is cooled by the thermal storage device (92) to provide a means of cooling air from the blower (22). At all other times, the coolant is cooled by expansion of refrigerant within the evaporator (64) to not only provide a coolant for use in the heat exchanger (30), but a coolant for recharging the thermal storage device (92) as well.
Abstract:
Inconsistent and costly corrosion protection with prior art heat exchangers are eliminated in a heat exchanger (10) formed of an aluminum fin (16) clad with an Al--Si--Zn braze clad compound (18), an aluminum tube (14) brazed to the fin (16), and bonded thereto by the braze clad compound (18) with zinc diffused into the tube, whereby the aluminum tube (14) is corrosion resistant by reason of the presence of sacrificial zinc therein.
Abstract:
An improved evaporator or evaporator/condenser for use in refrigeration or heat pump systems including first and second spaced, pressure resistant headers (10, 12) ; a plurality of elongated tubes (20) of flattened cross-section extending in parallel, spaced relation between and in fluid communication with the headers (10, 12) and serpentine fins (34) extending between and bonded to adjacent ones of the tubes (20). The tubes (20) and fins (34), between the headers (10, 12), define a nonplanar configuration having an apex (80). A condensate trough (82) is aligned with and opens towards the apex (80) to receive condensate dripping therefrom.
Abstract:
The high cost of fabricating heat exchangers having two fluid flow paths in countercurrent or cross current relation is minimized by utilizing an extrusion (14) wound upon itself with adjacent convolutions (16, 18, 20, 24) spaced at (26) and located within a housing (10). A baffle (56) or a seal (82, 84) are employed within the housing (10) to respectively define cross current or countercurrent heat exchangers. Alternatively, an extrusion such as a unitary extrusion (100) may contain plural flow paths (114, 120, 122) or an extrusion made up of two extrusions (150, 152) bonded together and having flow paths (162, 164) may be employed.
Abstract:
Low efficiency in an evaporator for a refrigerant may be increased by providing the evaporator with at least two passes (10, 12) defined by two rows of tubes (20) and four elongated header passages (24, 26, 28, 30) with the header passages (24, 26) being in fluid communication with the tubes (20) in the pass (10) and the header passages (28, 30) being in fluid communication with the tubes (20) in the pass (12). The pass (10) is downstream from the pass (12) and includes an inlet (32) to the header passage (24) intermediate the ends thereof. An outlet (34) is located in the header passage (28) for the pass (12) and intermediate the ends thereof. At least one fluid passage (36) extends between the headers (26, 30) intermediate the ends thereof.
Abstract:
A multi-fluid heat exchanger having separate fluid flow paths for two fluid streams to be heated or cooled by a third fluid stream includes first and second elongated, parallel tubular headers (10, 12), having opposed ends (14), generally uniformly spaced elongated tube slots (16) in each of the headers (10, 12) with the tube slots (16) in one header (10) facing-and aligned with the tube slots (16) and the other header (12), a plurality of flattened tubes (20) extending between the headers (10, 12) and having ends (22) received in aligned ones of the tube slots (16), one tube slot (24) in each header being unoccupied by any of the flattened tubes (20), the one tube slots (24) being aligned with each other and located at a predetermined location between the ends (14) of the headers (10, 12) and between two groups (A, B) of the flattened tubes (20) so there are two groups of the flattened tubes (20) on each side of the one tube slot (24), a pair of baffles (30) in each header (10, 12) with one on each side of the one tube slot (24) and fins (26, 32) extend between and are in heat transfer relation with at least the adjacent tubes (20) in each of the groups (A, B).