Abstract:
A method of managing a voicemail network is described herein. Voicemail system data for the voicemail network is received. The voicemail system data includes communication node data, source voicemail node data, and destination voicemail node data. A destination voicemail node is determined based on the destination voicemail node data and a destination voicemail node criteria. When the source voicemail node data meets a source voicemail node criteria, a communication node is associated with the destination voicemail node.
Abstract:
A server system exchanges trust signaling with a first access network, establishes hardware trust with the first access network, and determines that the first access network has established hardware trust with a communication interface to a second access network. The server system exchanges Session Initiation Protocol (SIP) signaling with a SIP system, establishes hardware trust with the SIP system, and determines that the SIP system has established hardware trust with the second access network and a second communication device. The server system exchanges SIP signaling with a first communication device and establishes hardware trust with the first communication device. The server system receives a SIP Invite requesting a communication session between the first communication device and the second communication device over hardware-trusted systems, and based on the established hardware trust, the server system responsively forwards the SIP Invite to the SIP system for delivery to the second communication device.
Abstract:
An unmanned aerial vehicle (UAV) is disclosed. The UAV comprises a battery, a flight mechanism, a radio frequency (RF) transceiver, a processor, a memory, and an application stored in the memory. When executed by the processor, the application discovers an environment where the UAV operates by flying in the environment to determine its boundaries; creates a map of the environment that the UAV flew through; and shares the map with a social robot. The application receives a command from the social robot via the RF transceiver, wherein the social robot receives a verbal request from a user of the social robot, wherein the social robot transforms the user request to a command for the UAV. The application then performs the command from the social robot. The application then lands on a designated charging pad to conserve energy. The application then transmits a report back to the social robot.
Abstract:
A portable electronic device is provided comprising a processor, a memory, a display, and an application stored in the memory that, when executed by the processor, initiates a plurality of user agents that each indicate a different communication point. The portable electronic device also transmits a request for a content from each of the user agents to a content source, the requests being transmitted substantially concurrently. The portable electronic device also receives a plurality of contents, each content associated with one of the user agents and each content formatted differently than the remaining contents. The portable electronic also presents one of the contents on the display, wherein the portable electronic device promotes concurrent downloading of a content in multiple formats from the content source.