Abstract:
A robotic attacher comprises a main arm, a supplemental arm coupled to the main arm, and a gripping portion coupled to the supplemental arm. The supplemental arm moves in an x-direction and a y-direction. The gripping portion moves in a first z-direction in relation to the supplemental arm. The gripping portion also moves in a second z-direction opposite the first z-direction in relation to the supplemental arm.
Abstract:
In certain embodiments, a system includes a three-dimensional camera and a processor communicatively coupled to the three-dimensional camera. The processor is operable to determine a first hind location of a first hind leg of a dairy livestock based at least in part on visual data captured by the three-dimensional camera and determine a second hind location of a second hind leg of the dairy livestock based at least in part on the visual data. The processor is further operable to determine a measurement, wherein the measurement is the distance between the first hind location and the second hind location. Additionally, the processor is operable to determine whether the measurement exceeds a minimum threshold.
Abstract:
A system that includes a three-dimensional (3D) camera configured to capture 3D images of a dairy livestock. The system further includes a memory operable to store a thigh gap detection rule set and a processor operably coupled to the 3D camera and the memory. The processor is configured to obtain the 3D image, to identify one or more regions within the 3D image comprising depth values greater than a depth value threshold, and to apply the thigh gap detection rule set to the one or more regions to identify a thigh gap region. The processor is further configured to demarcate an access region within the thigh gap region. The processor is configured to reduce the width of the access region by shifting a first vertical edge and a second vertical edge of the access region and to determine position information for the first vertical edge and the second vertical edge.
Abstract:
A system includes a controller and a robotic arm. The controller accesses an image signal of an udder of a dairy livestock, and determines a spray position by processing the accessed image signal to determine a tangent at the rear of the udder and a tangent at the bottom of the udder. The spray position is a position relative to the intersection of the two tangents. A robotic arm communicatively coupled to the controller positions a spray tool at the spray position.
Abstract:
A robotic attacher comprises a gripping portion, a vision system positioned on a first surface of the gripping portion, and at least one nozzle positioned on a second surface of the gripping portion. The gripping portion is rotates about a longitudinal axis such that during a first time, the vision system is positioned generally on the top of the gripping portion, and during a second time, the nozzle is positioned generally on the top of the gripping portion.
Abstract:
A system for processing an image comprises a three-dimensional camera that captures an image of a dairy livestock and a processor communicatively coupled to the three-dimensional camera. The processor accesses a first pixel having a first depth location, a second pixel having a second depth location, and a third pixel having a third depth location. The processor determines that the second pixel is an outlier among the first pixel and the third pixel based upon the first depth location, the second depth location, and the third depth location, and discards the second pixel from the image based at least in part upon the determination.
Abstract:
This invention is related to a double grab, its rinsing cup and milking machine provided therewith, and the method for automatically applying teat cups to the teats of an udder of an animal to be milked. The double grab according to the invention includes: —a first housing part provided with a first magnet designed to hold a first teat cup; —a second housing part, installed substantially in a horizontal plane next to the first housing part, provided with a second magnet designed to hold a second teat cup; —whereby each housing part is provided with separate pivoting means that can be activated and is designed to make the related housing part pivot around a pivoting axis which in use, extends substantially in a horizontal direction, substantially in a widthwise direction of the arm.
Abstract:
A robotic attacher comprises a main arm, a supplemental arm coupled to the main arm, and a gripping portion coupled to the supplemental arm. The gripping portion comprises at least one nozzle and is operable to rotate such that during a first time, the nozzle is positioned away from the top of the gripping portion, and during a second time, the nozzle is positioned generally on the top of the gripping portion.
Abstract:
An apparatus comprises a milking box having a stall to accommodate a dairy livestock and a robotic attacher. The robotic attacher comprises a main arm that is suspended vertically from a rail of the milking box, and a supplemental arm that is coupled to and extends horizontally from the main arm along a longitudinal axis. The supplemental arm comprises a pivot assembly that pivots a gripping portion around a vertical axis that is substantially parallel to the main arm of the robotic attacher, in a direction transverse to the longitudinal direction of the supplemental arm.
Abstract:
The present invention relates to a cleaning device (4) for cleaning and pretreating teats of an animal for milking, milking machine (2) provided therewith and method therefor. The cleaning device according to the invention comprises: • a frame (52) provided with an arm (6); • a cleaning head arranged on the arm and provided with a rotatable holder (12) on which one or more rotatable cleaning elements (14) are provided; and • moving means (48, 50, 56) connected to the frame for displacing the cleaning head relative to the teats such that the teats are cleanable using the cleaning elements.